首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patrick Das Gupta 《Pramana》2004,63(4):877-882
Discussions related to gravitational wave experiments viz. LIGO and LISA as well as to observations of supermassive black holes dominated the workshop sessions on gravitational waves and relativistic astrophysics in the ICGC-2004. A summary of seven papers that were presented in these workshop sessions has been provided in this article.  相似文献   

2.
The interferometric gravitational wave detectors represent the ultimate evolution of the classical Michelson interferometer. In order to measure the signal produced by the passage of a gravitational wave, they aim to reach unprecedent sensitivities in measuring the relative displacements of the mirrors. One of them, the 3-km-long Virgo gravitational wave antenna, which will be particularly sensitive in the low-frequency range (10–100 Hz), is presently in its commissioning phase. In this paper the various techniques developed in order to reach its target extreme performance are outlined.  相似文献   

3.
As with the laser interferometer gravitational-wave observatory(LIGO),the matched filtering technique will be critical to the data analysis of gravitational wave detection by space-based detectors,including LISA,Taiji and Tianqin.Waveform templates are the basis for such matched filtering techniques.To construct ready-to-use waveform templates,numerical relativity waveforms are a starting point.Therefore,the accuracy issue of numerical relativity waveforms is critically important.There are many investigations regarding this issue with respect to LIGO.But unfortunately there are few results on this issue with respect to space-based detectors.The current paper investigates this problem.Our results indicate that the existing numerical relativity waveforms are as accurate as 99%with respect to space-based detectors,including LISA,Taiji and Tianqin.Such an accuracy level is comparable to that with respect to LIGO.  相似文献   

4.
The direct detection of gravitational waves will provide valuable astrophysical information about many celestial objects. Also, it will be an important test to general relativity and other theories of gravitation. The gravitational wave detector SCHENBERG has recently undergone its first test run. It is expected to have its first scientific run soon. In this work the data analysis system of this spherical, resonant mass detector is tested through the simulation of the detection of gravitational waves generated during the inspiralling phase of a binary system. It is shown from the simulated data that it is not necessary to have all six transducers operational in order to determine the source’s direction and the wave’s amplitudes.  相似文献   

5.
Gravitational waves-a prediction of Einstein’s General Relativity-are among the most elusive signals incident on the Earth. These signals-ripples in the curvature of space-time-carry information about what is happening deep in the heart of some of the most violent events in the Universe. However, their observation remains one of the most challenging problems in experimental astrophysics, as the measurement sensitivity required by the detectors is equivalent to measuring a change in the separation of the Earth and Sun by the diameter of an atom. A global network of such detectors-LIGO, Virgo and GEO-is now in operation, with enhanced versions being developed and other detectors planned. Further a space-borne detector, LISA, is under development as a joint ESA/NASA mission. In this short review, the nature of gravitational waves, how the detectors work, and the preliminary results which are already showing promise, will be discussed.  相似文献   

6.
B.H. Lee  L. Ju  D.G. Blair 《Physics letters. A》2006,350(5-6):319-323
In a previous Letter, we have shown that the use of orthogonal ribbons could provide a better mirror suspension technique in interferometric gravitational wave antennas. One of the key improvements presented by the orthogonal ribbon is the reduction in the number of violin string modes in the direction of the laser. We have considered more elaborate geometries in recent simulations and obtained a suspension that provides further reduction in the number of violin string modes in the direction of the laser, as well as in the direction orthogonal to the laser. This thin walled niobium tube suspension exhibits a reduction in the number of violin modes to 5 in each direction up to a frequency of 5 kHz. Furthermore, the violin mode thermal noise peaks can be reduced in amplitude by 30 dB.  相似文献   

7.
We present a new optical control scheme for a laser interferometric gravitational wave detector that has a high degree of tolerance to interferometer spatial distortions and noise on the input light. The scheme involves resonating the rf sidebands in an interferometer arm cavity.  相似文献   

8.
9.
空间引力波探测计划-LISA系统设计要点   总被引:2,自引:0,他引:2       下载免费PDF全文
王智  马军  李静秋 《中国光学》2015,8(6):980-987
为了验证广义相对论,世界各国竞相开展了空间引力波探测方面的研究。本文以欧洲空间引力波探测LISA(Laser Interferometer Space Antenna)计划为例,根据基线设计,对LISA系统有效载荷及主要组件的设计进行了分析和阐述。LISA主要探测和研究低频引力波辐射,其工作频段为10-3~1 Hz,工作距离为5×106 km,预计能探测到双致密星系统以及星系合并引起的超大质量并合等波源,测距精度达到pm量级。以上研究希望能对我国未来的空间引力波探测计划有一定启示。  相似文献   

10.
11.
12.
It is proposed to replace the Fabry-Perot interferometers incorporated into the combined Fabry-Perot-Michelson interferometer (FPMI) by transmission-like reflection interferometers (TRIs), creating bright (transmission-like) interference fringes in the reflected light. TRIs employ asymmetric metal-dielectric mirrors with a “matching” absorbing layer. The calculations show that the shot noise-limited sensitivity of an FPMI with TRIs is nearly as high as that of a conventional FPMI (for the same quality of dielectric coatings). In the presence of scattered light or when the laser and interferometer modes are not coupled well enough, the new version of the FPMI offers considerable advantages due to the mode-filtering properties of a TRI.  相似文献   

13.
14.
肖笛  耿金军  戴子高 《物理》2019,48(9):545-553
2017年,轰动世界的引力波事件GW170817被确认来自于双中子星的并合。这是人类历史上首次探测到这种极端、剧烈的天体物理事件。双中子星是两个致密天体——中子星组成的系统,由双恒星系统经历漫长演化后形成。文章将从双中子星并合前、并合过程中与并合后全面地描述这种剧烈的天文现象,走进一段神奇而迤逦的旅程。未来随着引力波观测设备的升级,有望再次看到来自宇宙深处的引力波以及伴随的丰富多彩的电磁信号。  相似文献   

15.
The large scale interferometric gravitational wave detectors consist of Fabry-Perot cavities operating at very high powers ranging from tens of kW to MW for next generations. The high powers may result in several nonlinear effects which would affect the performance of the detector. In this paper, we investigate the effects of radiation pressure, which tend to displace the mirrors from their resonant position resulting in the detuning of the cavity. We observe a remarkable effect, namely, that the freely hanging mirrors gain energy continuously and swing with increasing amplitude. It is found that the “time delay”, that is, the time taken for the field to adjust to its instantaneous equilibrium value, when the mirrors are in motion, is responsible for this effect. This effect is likely to be important in the optimal operation of the full-scale interferometers such as VIRGO and LIGO. Received 12 July 1999  相似文献   

16.
17.
Laser interferometer gravitational wave detectors require very high optical quality test masses. We report the bulk Rayleigh scattering in high quality fused silica samples. Results show that the scattering of the high quality fused silica is similar for various grades of fused silica from Heraeus. The total integrated scattering is about 0.7 ppm cm− 1at 1064 nm wavelength, which agrees with the theoretical value calculated using known fused silica parameters. All samples show Rayleigh scattering ratio inhomogeneity of ~ 4%.  相似文献   

18.
We have investigated the interaction of an electromagnetic (EM) wave with a standing gravitational wave (GW) in an external static magnetic field,and obtained concrete forms of first-order perturbative EM energy fluxes.Unlike the propagating properties of the “left-circular” and “right-circular” waves of the tangential perturbative energy fluxes around the symmetrical axis,the radial perturbative energy fluxes are expressed as the outgoing and imploding waves to the symmetrical axis.We also examine several physical examples and show that this effect can produce very small but nonvanishing radial perturbative photon fluxes.This may be useful for EM detection of the high-frequency relic GWs of the GHz region in quintessential inflationary models.  相似文献   

19.
This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.  相似文献   

20.
This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors,and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号