首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new numerical method is proposed to predict the effect of particle clustering on grain boundaries in a ceramic- particle-reinforced metal matrix composite on its mechanical properties, and micromechanical finite-element simulation of stress–strain responses in composites with random and clustered arrangements of ceramic particles are carried out. A particular material modeled and analyzed is a TiC-particle-reinforced Al matrix composite processed by powder metallurgy. A representative volume element of a composite microstructure with 5 vol.% TiC is reconstructed based on the tetrakaidecahedral grain boundary structure by using a modified random sequential adsorption. The model proposed in this study accurately represents the stress concentrations and particle-particle interactions during deformation of the powder-metallurgy-processed composite. A comparison with the random-arrangement model shows that the present numerical approach is more accurate in simulating the behavior of the composite material.  相似文献   

2.
A new approach to the generalized self-consistent method [1,2] has been developed for problems of the statistical mechanics of composites with composite or hollow inclusions. The approach can reduce the problem of predicting the effective elastic properties of composites to a simpler averaged problem of a single, composite, or hollow inclusion with inhomogeneous elastic surrounding in a homogeneous effective elastic medium. The problem of predicting the effective elastic properties of composites with unidirectional hollow fibers or hollow spherical inclusions are studied by using the new approach.Submitted to the 10th International Conference on Mechanics of Composite Materials, April 20–23, 1998, Riga, Latvia.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 34, No. 2, pp. 173–183, March–April, 1998.  相似文献   

3.
The generalized self-consistent method is extended to the problems of statistical mechanics of composites with random elastic properties of inclusions. This approach makes it possible to reduce the problem of predicting the effective elastic properties of composites with random structures to a sequence of simpler homogenized boundary-value problems for solitary inclusions with inhomogeneous elastic transition layers in a homogeneous effective elastic medium and with the corresponding boundary conditions. The elastic properties of a solitary inclusion for the gth homogenized problem are found from the solutions of the gth and (g+1)th homogenized problems. The elastic properties and sizes of the transition layers account for the random distribution, random sizes, and random elastic properties of inclusions in the composite. A test problem of predicting the effective elastic properties of a transversely isotropic layer composite with random elastic properties of some layers is solved by using the method proposed. The solution obtained coincides with the known exact solution [1].Perm State Technical University, Perm, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 6, pp. 785–796, November–December, 1999.  相似文献   

4.
Fabric or continuous fiber reinforced rubber components (e.g. tires, air springs, industrial hoses, conveyor belts or membranes) are underlying high deformations in application and show a complex, nonlinear material behavior. A particular challenge depicts the simulation of these composites. In this contribution we show the identification of the stress and strain distributions by using an uncoupled multiscale modeling method, see [1]. Within this method, two representation levels are described: One, the meso level, where all constituents of the composite are shown in a discrete manner by a representative volume element (RVE) and secondly, the macro level, where the structural behavior of the component is defined by a smeared anisotropic hyperelastic constitutive law. Uncoupled means that the RVE does not drive the macroscopic material behavior directly as in a coupled approach, where a RVE boundary value problem has to be solved at every integration point of the macro level. Thus an uncoupled approach leads to a tremendous reduction in numerical effort because the boundary value problem of a RVE just has to be solved at a point of interest, see [1]. However, the uncoupled scale transition has to fulfill the HILL–MANDEL condition of energetic equivalence of both scales. We show the calibration of material parameters for a given constitutive model for fiber reinforced rubber by fitting experimental data on the macro level. Additionally, we demonstrate the determination of effective properties of the yarns. Finally, we compare the energies of both scales in terms of compliance with the HILL–MANDEL condition by using the example of a biaxial loaded sample and discuss the consequences for the mesoscopic level. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
A quasi-periodic model is developed for random structures of composites, when the locations of inclusions are given in terms of random deviations from nodes of an ideal periodic lattice. Solution of the stochastic boundary problem of the theory of elasticity is examined for a quasi-periodic component by the method of periodic components, which is reduced to determination of the field of deviations from the known solution for a corresponding periodic composite. The solution is presented for the tensor of effective elastic properties of a quasi-periodic composite in singular approximation of the method of periodic components in terms of familiar solutions for tensors of the effective elastic properties of composites with periodic and chaotic structures and the parameters of the quasi-periodic structure: the coefficient of periodicity and the tensor of the anisotropy of inclusion disorder. A numerical calculation is performed for the effective transversally isotropic elastic properties of unidirectional fibrous composites with different degrees of fiber disorder.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 4, pp. 460–473, July–August, 1997.  相似文献   

6.
The mechanical behavior of carbon-fiber-reinforced polymer matrix composites having undergone a thermo-oxidation process is studied. The purpose is to perform a multiscale analysis of the consequences of oxidation on the intrinsic mechanical properties of the external composite ply and on the internal mechanical states experienced by the structure under mechanical loads. The effective mechanical properties of oxidized composite plies are determined according to the Eshelby–Kr?ner self-consistent homogenization procedure, depending on evolution of the oxidation process. The results obtained are compared with estimates found by the finite-element method. The macroscopic mechanical states are calculated for a unidirectional composite and laminates. The macroscopic stresses in each ply of the structure are determined by the classical lamination theory and the finite-element method, whereas the local stresses in the carbon fiber and epoxy matrix are calculated by using an analytical stress concentration relation.  相似文献   

7.
A numerical procedure is developed to determine effective material properties of unidirectional fiber reinforced composites with rhombic fiber arrangements. With the assumption of a periodic micro structure a representative volume element (RVE) is considered, where the phases have isotropic or transversely isotropic material characterizations. The interface between the phases is treated as perfect. The procedure handles the primary non-rectangular periodicity with homogenization techniques based on finite element models. Due to appropriate boundary conditions applied to the RVE elastic effective coefficients are derived. Six different boundary condition states are required to get all coefficients of the stiffness tensor. Results are listed and compared with other publications and good agreements are shown. Furthermore new results are presented, which exhibit the orthotropic behavior of such composites caused by the rhombic fiber arrangement. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
During the last years, the development and application of new composite materials gained more and more importance. For engineering applications it is necessary to get effective material properties of such materials. In this contribution we present some aspects of computational homogenisation procedures of microheterogeneous materials which can show decohesion in a cohesive zone around the particles. Due to the decohesion we get finite deformations and .nite strains within the RVE. The geometrical and material nonlinearities cause the main dif.culties. The homogenization procedure leads to an effective stress strain curve for the RVE, and for the nonlinear elastic case one can also obtain effective material parameters. It is necessary to do statistical tests in order to get a representative result. Here we set a special focus on the adaptive numerical model, the statistical testing procedure and the different boundary conditions (pure tractions and pure displacements) applied on the RVE. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
G. Al Kassem  D. Weichert 《PAMM》2009,9(1):413-414
The paper deals with the determination of macroscopic material properties of polymer composites by meso-mechanical numerical modeling. Focus is laid on the methodology how to build up appropriate representative volume elements (RVE) to describe the microstructure of spherical-particles and fibers reinforced composites and how to apply appropriate 3D boundary conditions. The work includes the comparison of the effective material parameters calculated through numerical homogenization of our FE-models with existing analytical formulations as well as with experimental data. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A simplified analytical method for calculating the stress-strain state in uniaxial tension of unidirectional composite specimens with glued wedges is developed. A numerical analysis of the influence of geometry and mechanical parameters of the specimens on the maximum stresses is carried out. The calculations are refined by finite-element modeling. Tests of the specimens have proved the suitability of the suggested technique of anchoring and load transfer in uniaxial tension of unidirectional high-strength composites.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 3, pp. 319–334, May–June, 2005.  相似文献   

11.
The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.Perm State Technical University. Translated from Mekhanika Kompozitmykh Materialov, Vol. 33, No. 3, pp. 289–299, May–June, 1997.  相似文献   

12.
In this contribution a modelling approach using numerical homogenisation techniques is applied to predict the effective nonlinear material behaviour of composites from simulations of a representative volume element (RVE). Numerical models of the heterogeneous material structure in the RVE are generated using the eXtended Finite Element Method (XFEM) which allows for a regular mesh. Suitable constitutive relations account for the material behaviour of the constituents. The influence of the nonlinear matrix material behaviour on the composite is studied in a physically nonlinear FE simulation of the local material behaviour in the RVE ­ effective stress-strain curves are computed and compared to experimental observations. The approach is currently augmented by a damage model for the fibre bundle. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A mathematical model for determining the effective elastic properties and describing the processes of inelastic deformation and damage accumulation of unidirectional fiber-reinforced composites with tetragonal and hexagonal structures is developed. A comparative analysis of the effective elastic moduli of glass, boron, organic, and carbon unidirectional plastics shows that, if the fiber volume fraction does not exceed 0.5, the effective elastic properties calculated by the models presented give closely related results. The calculation results for nonlinear fields of deformation and failure are presented and the limiting strength surfaces of fibrous glass plastics with hexagonal and tetragonal structures are obtained for different transverse loading paths. It is found that the structure of a composite affects significantly its strength properties.Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).Perm' State Technical University, Perm', Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 455–464, July–August, 2000.  相似文献   

14.
The numerical prediction of the fields of inelastic strains (the linear invariant of the tensor of inelastic strains) in thermoset polyester/marble filler composite plates is discussed. A uniformly distributed load is applied to the plates, which lie on a steel base. The strain fields are predicted by means of the boundary element method by using creep test data for the composites and the polyester matrix itself. Identical creep tests were performed for two ages of the materials (1 month and 13 years), which allowed evaluating the aging effect. The study is carried out in two stages. At the first stage, the application of the generalized Maxwell-Gurevich equation to the thermoset matrix/mineral filler composite is demonstrated. The model parameters determined from the experimental creep data is used for the second stage, where the state of inelastic strains in the plates is predicted by applying the boundary element method. The influence of composite formulation (filler content) and physical aging of the polyester matrix on the state of inelastic strains in the plates is shown.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 145–156, March–April, 2005.  相似文献   

15.
The method of quasi-periodic components, a new method of statistical mechanics of composites, is presented. In correlative approximation, this method makes it possible to reduce the problem of solving the stochastic boundary-value problem of elasticity theory for composites with disordered structures to a simpler problem for an individual cell with one inclusion in a homogeneous elastic medium. The generalized volumetric forces on the cell boundary take into account the random distribution of inclusions in the composite fragment studied. The problem for one inclusion cell can be solved, for example, by the boundary element method. The numerical solution in the correlative approximation of the method of quasi-periodic components for inhomogeneous interphase stress fields in the matrix of an epoxy composite containing randomly distributed unidirectional fibers is given. A comparison with the known analytical solutions obtained by other authors confirms the high accuracy of the correlative approximation.Perm' State Technical University, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 4, pp. 465–478, July–August, 1999.  相似文献   

16.
The main focus of the present paper is the estimation of the macroscopic stress–strain behavior of a particulate composite. A composite with a cross-linked polymer matrix in a rubbery state filled with an alumina-based mineral filler is investigated by means of the finite-element method. The hyperelastic material behavior of the matrix is described by the Mooney–Rivlin material model. Numerical models on the basis of unit cells are developed. The existence of a discontinuity (breaking) in the matrix at higher loading levels is taken into account to obtain a more accurate estimate for the stress–strain behavior of the particulate composite investigated. The numerical results obtained are compared with an experimental stress–strain curve, and a good agreement is found to exist. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a polymer matrix.  相似文献   

17.
Rainer Glüge 《PAMM》2013,13(1):251-252
We discuss generalized boundary conditions for representative volume elements (RVE), which include the classical boundary conditions as special cases. From the generalization, stochastic boundary conditions are derived. These allows to adjust the the stiffness of the boundary conditions smoothly between the extremal cases of homogeneous strain and homogeneous stress boundary conditions. We found that it needs to be distinguished between the resistance of the boundary conditions against homogeneous and inhomogeneous RVE deformation. The stochastic BC can combine the moderate stiffness of the well known periodic boundary conditions with the high resistance against localization of the homogeneous strain boundary conditions. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This contribution presents a method for the construction of three-dimensional Statistically Similar Representative Volume Elements (SSRVEs) for dual phase steels (DP steels). From such kind of advanced high strength steels, enhanced material properties are observed, which originate in the interaction of the individual constituents of the material on the microscale. Our aim is to directly incorporate the microstructure in the material modeling, which can be accomplished by applying i. e. the FE2 method. A RVE representing the real material is used in the microscopic boundary value problem, which is solved at each macroscopic integration point. Since such RVEs usually exhibit a high complexity due to the underlying real microstructure, high computational costs are a drawback of the approach. We replace this RVE with a SSRVE, which has a lower complexity but which is still able to represent the mechanical behavior of the RVE and thus of the real microstructure. Virtual experiments show the performance of the method. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50–1000 sec–1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 6, pp. 776–782, November–December, 1995.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).  相似文献   

20.
Investigation of vibration and buckling of thin walled composite structures is very sensitive to parameters like uncertain material properties and thickness imperfections. Because of the manufacturing process and others, thin walled composite and other structures show uncertainties in material properties, and other parameters which cannot be reduced by refined discretization. These parameters are mostly spatial distributed in nature. Here I introduce a semivariogram type material property model to predict the spatial distributed material property (like young's modulus) over the structure. The computation of semivariogram parameters needs the local material properties over a prespecified gird. The material properties at each grid have been obtained by considering a statistically homogeneous representative volume element (RVE) at each gird. According to random nature of the spatial arrangement of fibers, the statistically homogeneous RVE is obtained using image processing. The effective material properties of the RVE have been obtained numerically with the help of periodic boundary condition. The methodology is applied to a composite panel model and modal analysis has been carried. The results of the modal analysis (eigen values and mode shapes) are compared with experimental modal analysis results which are in good agreement. Using the presented material property model we can better predict the vibration characteristics of the thin walled composite structures with the inherent uncertainties. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号