首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium hydroxoaluminate hydrates were precipitated from different sodium hydroxoaluminate and hydroxoaluminate-excess hydroxide solutions at ambient temperature (at CAl = 0.1 to 0.3 M and at XS OH/Al = 0 to above 8). The precipitations were monitored by potentiometric (pH) measurements. Precipitate morphologies were examined by optical microscopy and precipitate compositions were determine by chemical analysis, infra-red spectrophotometry and thermal analysis. Generally at OH/Al ratios of 4 to 4.5 (XS OH/Al = 1 to 1.5), the compound 2 CaO · · Al2O3 · 8 H2O (C2AH8) was precipitated with some aluminium hydroxide; then at OH/Al ratios of 5 to above 11 (XS OH/Al = 2 to above 8), the compound 2 CaO · Al2O3 · 8 H2O was precipitated with increasing amounts of the compound 4 CaO · Al2O3 · 13 H2O (C4AH13).  相似文献   

2.
Barium hydroxoaluminate hydrates were precipitated from different sodium hydroxoaluminate solutions at 20 °C; CAl varied from 0.1 to 0.5 M and initial Ba/Al2 ratios ( = excess OH/Al ratios) varied from 1 to 7. Precipitate compositions were determined by chemical analysis, infra-red spectrophotometry and thermal analysis. The compound BaO · Al2O3 · 7 H2O was precipitated at initial Ba/Al2 ratios of one to well above two while the compound 2 BaO · Al2O3 · 5 H2O was only precipitated over a narrow range of concentrations. The compound Ba(OH)2 · 8 H2O was precipitated from solutions of high hydroxide and barium ion concentrations. The ionic equilibria and precipitation mechanisms in different solutions are discussed.  相似文献   

3.
Calcium aluminium hydroxides were coprecipitated from different mixed metal cation solutions — at total CM = 0.1 M and Ca/Al2 ratios from 1 to 4 — with sodium hydroxide solution at ambient temperature. The coprecipitations were monitored by potentiometric (pH) titration and the final coprecipitate compositions were examined by chemical analysis, infra-red spectrophotometry and thermal analysis Generally, microcrystalline aluminium hydroxide was first precipitated at pH about 4; this then redissolved on further addition of sodium hydroxide to form hydroxoaluminate anion and polyanion and calcium aluminium hydroxide coprecipitates were formed continuously at pHs from about 9 to above 12. Their compositions were similar to the calcium hydroxoaluminate hydrates formed by direct precipitation from high pH sodium hydroxoaluminate solutions. At Ca/Al2 ratio = 1, the main phase was probably Ca2(H2O)h[Al2(OH)4]2 with some Al(OH)3; At Ca/Al2 ratio = 2, the main phase was probably Ca2(H2O)h[Al2(OH)10] dehydrating to Ca2[Al2O(OH)8]; At Ca/Al2 ratios = 3–4, the main phase was Ca2(H2O)h[Al2(OH)10] with increasing amounts of Ca4(H2O)h(OH)4[Al2(OH)10] and 5–10 percent adsorbed or post-precipitated Ca(OH)2.  相似文献   

4.
A series of aluminium hydroxocarbonate hydrates were prepared by precipitation from aluminium nitrate solution, with five sodium hydrogen carbonate-sodium carbonate solutions of different pH, at ambient temperature. The course of precipitation was monitored by pH measurement and the final precipitate compositions were determined by chemical analysis, infra-red spectrophotometry, X-ray diffraction and thermal analysis. Precipitation generally occurred through three stages, primary precipitation of materials with low carbonate content at low pH with evolution of carbon dioxide, their dissolution to form hydroxcarbonato anions and then secondary reprecipitation of the final products at higher pH. These materials were mixtures of polyhydroxoaluminium carbonate hydrates of general composition Aln(OH)3n-2CO3 · hH2O (where n = 2, 4, 6 and h = 6–8); their CO3 content increased with increasing pH and carbonate anion content of the precipitant solution.  相似文献   

5.
Magnesium nickel hydroxides (solid solutions) were coprecipitated from different mixed metal cation solutions (overall concentration 0.1 M) and from hydroxide solution (0.1 M). The course of different coprecipitations was monitored by potentiometric (pH) titrations. Final Coprecipitate compositions were determined by chemical analysis, infra-red spectrophotometry and thermal analysis. The ionic equilibria involved in different coprecipitations and the precipitation mechanisms are discussed.  相似文献   

6.
Magnesium hydroxoaluminate hydrates were coprecipitated from different mixed metal cation solutions at Mg/Al2 ratios from 1 to 4 by ammonium hydroxide. The coprecipitations were monitored by potentiometric titration and the final precipitate compositions were examined by chemical analysis, X-ray diffraction, infra-red spectrophotometry and thermal analysis. The process of coprecipitation was similar to that for coprecipitation with sodium hydroxide but large excess of ammonium hydroxide was required for complete reaction at pHs from about 8 to 10.
  • At Mg/Al2 = 1, the main phase was probably Mg(H2O)h [Al(OH)4]2;
  • at Mg/Al2 = 2, the main phase was probably Mg2(H2O)h [Al2(OH)10];
  • at Mg/Al2 = 4, the main phase was probably (MgOH4) (H2O)h [Al2(OH)10].
  相似文献   

7.
Magnesium aluminium hydroxides were coprecipitated from different mixed metal cation solutions — at total CM = 0.1 M and Mg/Al2 ratios from 1 to 6 — with sodium hydroxide solution at ambient temperature, with different pre-ageing conditions for the aluminium hydroxide pre-precipitate. The coprecipitations were monitored by potentiometric (pH) titration and the final precipitate compositions were examined by chemical analysis, infrared spectrophotometry and thermal analysis. Magnesium hydroxide was coprecipitated onto completely recrystallised aluminium hydroxide as a simple mixture. Generally, with no to three days pre-ageing, microcrystalline aluminium hydroxide was first precipitated at pH about 4; this then partially redissolved on further addition of sodium hydroxide (to form hydroxoaluminate anion) and magnesium aluminium hydroxide coprecipitates were formed continuously at pHs from 8.0–8.7 to 12.0–12.5. Their compositions were similar to the magnesium hydroxoaluminate hydrates formed by direct precipitation from high pH sodium hydroxoaluminate solutions.   相似文献   

8.
Magnesium chromium (III) hydroxides were coprecipitated at ambient temperature from different mixed metal cation solutions — at CMtot = 0.1 M and Mg/Cr2 ratios varying from 1 to 4 — with sodium hydroxide solution. The coprecipitations were monitored by potentiometric (pH) titration and the final precipitate compositions were examined by chemical analysis, i.r. spectrophotometry and thermal analysis. Generally, microcrystalline chromium(III) hydroxide was first precipitated at pH about 5; this material then redissolved on further addition of hydroxyl ion to form hydroxochromate(III) anion and magnesium chromium hydroxide coprecipitates were then formed continuously (at OH/Cr ratios from 4 to 10) at pHs from 9.5–10 to about 11. The coprecipitates from Mg/Cr2 = 1 systems was predominately magnesium hydroxochromate hydrate. The coprecipitates from Mg/Cr2 = 2 to 4 systems were mixture or solid solutions of magnesium hydroxochromate hydrate with increasing amounts of magnesium hydroxide. The ionic equilibria involved in different coprecipitations are discussed.  相似文献   

9.
Magnesium aluminium hydroxocarbonate hydrates were coprecipitated from mixed metal nitrate solutions, at total CM = 0.2 M and Mg/Al2 = 1 ratio, with four sodium hydrogen carbonate-sodium carbonate solutions (of pH 8.1 to 11.5) at ambient temperature. The course of precipitation was monitored by potentiometric (pH) titration, and the compositions of the primary and final precipitates were determined by chemical analysis, infrared spectrophotometry and X-ray diffraction. Precipitation generally occurred through three stages, primary precipitation (of low CO3 aluminium hydroxocarbonates) at low pH with evolution of carbon dioxide, their dissolution by complexing to form hydroxocarbonatoaluminate anions and then secondary precipitation of the final coprecipitate at higher pHs. The final product from coprecipitation by sodium hydrogen carbonate solution (pH 8.1) was mainly the magnesium hydroxocarbonatoaluminate ‘MAHC I’; the final products from coprecipitation by sodium hydrogen carbonate-sodium carbonate solutions (pH 9.4 and 10.3) were ‘MAHC I’/‘MAHC II’ mixture and ‘MAHC II’/‘MAHC I’ mixture whereas the final product from coprecipitation by sodium carbonate solution (pH 11.5) was a complex mixture if ‘MAHC II’ with ‘MAHC I’ and ‘MAHC III’;
  • ‘MAHC I’ was probably Mg2[Al4(OH)10(CO3)3] · hH2O,
  • ‘MAHC II’ was probably Mg[Al2(OH)4(CO3)2] · h H2O whereas
  • ‘MAHC III’ was probably Mg[Al2(OH)6CO3] · h H2O.
  相似文献   

10.
The dissolution and recrystallisation of beryllium, zinc, cadmium and tin (II) hydroxides and chromium (III), iron(III), aluminium, scandium, yttrium, gallium and indium hydroxides, from sodium hydroxide solutions of concentrations C = 1 to 20 M at ambient temperatures, are surveyed. The different inic equilibria in metal hydroxide-sodium hydroxide systems are examined: the phases crystallising from different sodium hydroxide solutions are tabulated and crystallisation mechanisms are analysed.  相似文献   

11.
The preparations, precipitations and recrystallisations of magnesium and calcium aluminosilicate hydrates, from aqueous suspensions of microcrystalline silica, aluminium hydroxide (and oxohydroxide) and magnesium (calcium) hydroxides at ambient temperatures to 400 °C, are surveyed. The phases reported in systems of different Mg(Ca)/(Al + Si) and Al/(Al + Si) composition ratios are tabulated and precipitation and recrystallisation mechanisms are proposed.  相似文献   

12.
Calcium silicate hydrates (C‐S‐H) are very important not only for their contribution to the development of cement and concrete properties but also for use as fillers and in silicate glasses. In the present work, the thermodynamics and the kinetics of the spontaneous precipitation of C‐S‐H from aqueous solutions were investigated over the pH range 10‐12 at 25 °C. The thermodynamic driving force was calculated taking into consideration all equilibria involved in the supersaturated solutions. In the range of the solution supersaturation values examined the precipitation occurred spontaneously, with the exception of the series of experiments done at pH 12.0, where induction times preceded the appearance of the precipitate. The rates were measured at constant pH as a function of the solution supersaturation and were found to depend strongly on the solution supersaturation, pH and on the total calcium to total silicate molar ratio in solution. Fit of the kinetics results in a power law relating rates of precipitation with respect to C‐S‐H precipitated, suggested a surface diffusion controlled mechanism for the formation of C‐S‐H. The precipitated solids did not show significant morphological differences at different pH values. From the induction times preceding the spontaneous precipitation at pH 12.0, a value of 30 mJm‐2 was calculated for the surface energy of C‐S‐H. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The precipitations of alkaline-earth metal and transition metal oxalates, from aqueous solution and from excess alkali metal oxalate solution, are surveyed: also the coprecipitations of transition metal oxalates together with alkaline-earth metal oxalates. The ionic equilibria that influence these precipitations are examined, the crystalline precipitate phases are tabulated and precipitation mechanisms are analysed.  相似文献   

14.
The precipitations of the sparingly-soluble acid, neutral and basic salts of the divalent cations beryllium, magnesium, calcium, strontium, barium, manganese (II), iron (II), cobalt (II), nickel (II), copper (II), zinc, cadmium, mercury (II), tin (II) and lead (II) with the inorganic anions sulphate, chromate, molybdate, monohydrogen phosphate, phosphate, and carbonate (from supersaturated aqueous solutions) are surveyed. The different types of ionic equilibria (cation hydrolysis, anion hydrolysis, ion-pair formation) that may influence these precipitations, at different pHs and ionic concentrations, are examined. The crystalline phases precipitated at different pHs are tabulated and the precipitation mechanisms (at different pHs) are analysed.  相似文献   

15.
The precipitation of barium, strontium, calcium and magnesium polymetaphosphate hydrates was studied from aqueous solutions of initial metal salt concentrations from 0.001 to 3 M at 20 °C; equivalent sodium polymetaphosphate solutions were added to the alkaline-earth metal chloride solutions. Precipitate compositions were determined by chemical analysis, paper chromatography, potentiometric analysis, thermogravimetric and differential thermal analysis and infra-red spectrophotometry; final crystallite morphologies and sizes were studied by scanning electron microscopy and X-ray powder diffraction. Nucleation rates and nucleus numbers (at the end of the induction periods) were very high; crystal numbers varied from 1014 to 1015 at the critical concentrations to above 1017 per 1. solution. Crystal growth rates were also very high and varied as the fourth power of the initial metal salt concentration. High molecular-weight metal polymetaphosphate hydrates were precipitated from the more dilute solutions (0.001 to 0.025 M) while increasing amounts of the more soluble intermediate and low molecular-weight products were precipitated from the more concentrated solutions. Washing with cold water removed the tri- and tetralinear and cyclic phosphate products. The magnesium salts were not precipitated even from 3 M aqueous solutions. The precipitates from aqueous (NaPO3(I))n (n = 12) solutions had the compositions (BaP2O6 · 2.5 H2O)6, (SrP2O6 · 3 H2O)n and (CaP2O6 · 4 H2O)n while the magnesium salt precipitate from 20 percent aqueous acetone solution had the composition (MgP2O6 · 4 H2O)n, the precipitate n values varied from 19 to 13. The precipitates from aqueous (NaPO3(II))n (n = 20) solutions contained 0.5n to n additional adsorbed water molecules; these precipitate n values varied in turn from 40 to 26. The final precipitate powders consisted of ‘spherules’ of highly microcrystalline or amorphous polymer glass; the spherule diameters were about 0.2 μm at the critical concentrations and decreased to below 0.05 μm with increasing solution concentrations.  相似文献   

16.
The studies of the rapid precipitation of magnesium hydroxide, from aqueous solutions of different concentrations by sodium, calcium and ammonium hydroxides, are analysed. The kinetics of nucleation and microcrystallite formation during the induction periods and the kinetics of crystal growth (onto the microcrystallites) to the final primary crystals are examined; the high final nucleus numbers and the sub-microscopic sizes of the final primary crystals are discussed according to Nielsen's theories.  相似文献   

17.
The coprecipitation of magnesium nickel oxalate dihydrates from mixed metal cation solutions was monitored by conductivity measurements. A series of coprecipitates was then prepared from 0.2 M solutions with Mg contents varying from 0.2 to 0.9 total metal cation and their compositions and structures studied by chemical analysis, infra-red spectrophotometry, thermogravimetric analysis and detailed differential calorimetry. The coprecipitates with upto 20 percent Mg content were solid solutions with structures similar to nickel oxalate dihydrate, the coprecipitates with 20 to 80 percent Mg content were probably mixed solid solutions while the coprecipitates with over 80 percent Mg content were solid solutions with structures similar to magnesium oxalate dihydrate. The ionic equilibria in supersaturated magnesium nickel oxalate solutions were analysed and mechanisms are proposed for coprecipitations from solutions of different Mg/(Mg + Ni) ratios.  相似文献   

18.
The precipitation of manganous, ferrous, cobalt, nickel and copper oxalate hydrates was studied from equivalent solutions of concentrations from 0.001 to 0.3 M at pHs 7 to 6, by optical microscopy and other methods. Crystals growth started after induction periods: the precipitations were heterogeneously nucleated at low supersaturations and homogeneously nucleated at medium to high supersaturations. The crystal numbers of the final precipitates depended on the number of nuclei (and crystallites) formed during the induction periods. At medium to high supersaturations, crystal numbers increased with increasing initial metal oxalate complex ion concentrations according to the relation. N = N1Cmoxβ, where β was 5. The N values increased in the order Mn ≪ Fe < Co < < Ni < Cu. The final crystal lengths, in this range, then decreased with increasing metal oxalate complex ion concentrations according to the relation lfin = l1/Cmoxγ, where γ was 1.3. For precipitations from solution of any concentration, smaller crystals were generally obtained in the precipitates of the metal oxalate of lower solubility; nickel oxalate precipitations were the exception to this.  相似文献   

19.
Barium chromate precipitations were studied from equivalent aqueous solutions of initial overall metal salt concentrations from 0.00013 to 0.010 M at ambient temperature and at pHs from 8 to 3. At pHs from 8 to 5, precipitation mainly occurred through homogeneous nucleation: the reciprocal induction periods (and nucleation rates) and the crystal numbers generally decreased with reduction of pH but the values at any effective mean metal salt concentration increased appreciably with increasing acidity. Presumably, both M++A and M++HA species were taking part in the nucleation process. – At pHs below 5, heterogeneous nucleation predominated in most precipitations: the crystal numbers and nucleus numbers at any effective metal salt concentration increased with reduction of pH in these systems. Presumably, more active sites for heterogeneous nucleation were developed.  相似文献   

20.
The precipitation of lead sulphate was studied from 0.0001 to 0.01 M aqueous solutions (supersaturations 3 to 600) and from 20% aqueous ethanediol, methanol and ethanol solutions, in polypropylene beakers, at ambient temperature: the experimental techniques were conductivity measurements and optical microscopy. The precipitations were heterogeneously nucleated at low supersaturations and homogeneously nucleated at intermediate to high supersaturations. New crystal morphologies generally developed at some what higher supersaturations in the aqueous alcohol systems. The final crystal lengths at first increased with increasing initial metal salt concentration and then decreased with this parameter; the largest crystals at any concentration were obtained from solutions in which lead sulphate solubility was highest. The critical supersaturations (for the onset of homogeneous nucleation) increased from 36 (in water) to 50 (in 20% aqueous ethanol): the surface energies for the formation of nuclei correspondingly increased from 90 to 110 mJ m−2 in good agreement with the Nielsen-Söhnel relation. The nucleation and crystal growth processes are taking in an aqueous environment of similar water activity to that of the bulk solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号