首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of a new barium tungsten bronze, Ba0.15WO3, has been established by X-ray diffraction and high-resolution microscopy studies. This bronze is orthorhombic, space group Pbm2 or Pbmm, with a = 8.859(3) Å, b = 10.039(8) Å, and c = 3.808(2)Å. The “WO3” framework is built up from corner-sharing WO6 octahedra forming pentagonal tunnels where the barium ions are located. Structural relationships with hexagonal tungsten bronze and tetragonal tungsten bronze structures are discussed.  相似文献   

2.
Phase relations in the SnWO system for compositions near to WO3 and temperatures up to 1173 K have been determined by electron microscopy and X-ray diffraction. The phase limits for the bronzes previously reported in this system have been determined. For the orthorhombic I bronzes the phase limits are from Sn0.04WO3 to Sn0.06WO3. Two orthorhombic II bronze phases form, one at a composition of Sn0.13WO3 to Sn0.15WO3, and another at Sn0.16WO3. These bronzes have structures which consist of lamellae of WO3 united by fault planes. The other bronze phase to form, with the tetragonal tungsten bronze structure, has a lower composition limit of Sn0.21WO3.  相似文献   

3.
Crystal chemistry and phase relations of the bronze forming region of the SnWO system have been investigated. Above 780°C the tin bronzes SnxWO3 are shown to be thermally unstable and an equilibrium diagram is established at 700°C which shows that the composition limits of the tetragonal phase are 0.21 ? x ? 0.29. Below x = 0.21 a series of single and two phase regions containing orthorhombic bronzes exists for which the composition limits have been established. In the range 0.29 ? x ? 0.76 the system comprises the tetragonal bronze, Sn2W3O8 and SnWO4, while above 0.76 there is no bronze, only Sn2W3O8, SnWO4 and free Sn. The phase Sn2W3O8 has been isolated and shown to have a hexagonal unit cell, a = 7.696 Å, c = 18.654 Å. The evidence of differential thermal analysis and X-ray studies suggests that this hexagonal phase arises from the decomposition of the tungsten bronze phase and is itself decomposed to cubic SnWO4 above 700°C. Small thermal effects observed in the DTA scans of tin-containing tetragonal bronzes are interpreted in terms of an order-disorder phenomenon arising from asymmetric tunnel occupancy by Sn2+ ions caused by the presence of the lone pair of electrons. Hydrogen reduction of SnxWO3 has been shown to result in complete removal of oxygen, producing Sn + α-W in the range 600–850°C. Some activation energy data are given for the reduction process.  相似文献   

4.
Two new binary Zintl phases, Sr3Sn5 and Ba3Sn5 were synthesized and structurally characterized. The revised structure of Ba3Pb5 is also reported. All three compounds are isotypic and crystallize with a modified Pu3Pd5 structure type. The anionic substructure is composed of X56– square pyramidal clusters (X = Sn, Pb), which are described as arachno clusters according to the Wade‐Mingos electron counting rules. The electronic structure of the pyramidal Zintl anions and the influence of the number of skeletal electrons of these clusters are investigated using the electron localization function (ELF). The structural relationship between Ba3Sn5 and the Zintl phases Ba3Si4 and Ba3Ge4 are analyzed. Additionally, two new Zintl phases Ba3Ge2.82Sn2.18 and Ba3Ge3.94Sn0.06, have been synthezised and their structures are reported, which directly show that the exchange of tin against germanium leads to a change from the M3X5 to the M3X4 structure type. This effect is traced back to the maximal charge acquisition property of the Zintl anions of heavier and lighter tetralides.  相似文献   

5.
A new form of tungsten trioxide WO3 has been obtained by dehydration of WO3·13H2O hydrate. The structural study was carried out from X-ray powder diffraction and selected area electron diffraction data. The crystallographic characteristics are: the hexagonal system; a = 7.298(2) Å, c = 7.798(3) Å; Z = 6. This hexagonal WO3 is built up of slightly distorted (WO6) octahedra sharing their corners arranged in six-membered rings in layers normal to the hexagonal axis; stacking of such layers leads to formation of large hexagonal tunnels. Some confirmations of this structure were made by high-resolution electron microscopy. Powder X-ray diffraction allowed us to determine an average structure. Absence of suitable single crystals has not permitted us to perform a complete structural determination. Although the existence of such a hexagonal structure for pure WO3 had been considered as likely, it had not been hitherto observed.  相似文献   

6.
Three new compounds—Sr7.04(2)Ga1.94(2)Sb6, Ba7.02(3)Ga1.98(3)Sb6 and Eu7.04(3)Ga1.90(3)Sb6—have been synthesized from reactions of the corresponding elements using gallium as a metal flux. Their crystal structures (space group I4¯3d (No. 220), Z=2 with unit cell parameters: a=9.9147(9) Å for the Sr-compound; a=10.3190(9) Å for the Ba-compound; and a=9.7866(8) Å for the Eu-compound) have been established by single-crystal X-ray diffraction. The structures are best described as Ga-stabilized derivatives of the hypothetical Sr4Sb3, Ba4Sb3 and Eu4Sb3 phases with the cubic Th3P4 type. Such an inclusion of interstitial Ga atoms in this atomic arrangement results in the formation of isolated [Ga2Sb6]14− fragments, isoelectronic and isostructural with the [Sn2Te6]6− anions in the K3SnTe3 type, and allows for the attainment of a charge-balanced electron count. In that sense, the Sr4Sb3, Ba4Sb3 and Eu4Sb3 binaries, which are expected to be electron-deficient and are currently unknown, can be “turned” into Sr7Ga2Sb6, Ba7Ga2Sb6 and Eu7Ga2Sb6, whose structures are readily rationalized following the Zintl concept.  相似文献   

7.
A series of quaternary lanthanum gallium tin antimonides LaGaxSnySb2 was elaborated to trace the structural evolution between the known end members LaGaSb2 (SmGaSb2-type) and LaSnySb2 (LaSn0.75Sb2-type). Five members of this series were characterized by single-crystal X-ray diffraction. For low Sn content, the Sn atoms disorder with Ga atoms in zigzag chains to form solid solutions LaGa1-ySnySb2 (0≤y≤0.2) adopting the SmGaSb2-type structure, as exemplified by LaGa0.92(3)Sn0.08Sb2 and LaGa0.80(3)Sn0.20Sb2 (orthorhombic, space group D52C2221,Z=4). For higher Sn and lower Ga content, there is a segregation in which the Sn atoms appear in chains of closely spaced partially occupied sites as in the parent LaSn0.75Sb2-type structure whereas the Ga atoms remain in zigzag chains as in the parent SmGaSb2-type structure. This feature is observed in the structures of LaGa0.68(4)Sn0.31(3)Sb2, LaGa0.62(3)Sn0.32(3)Sb2, and LaGa0.43(3)Sn0.39(3)Sb2 (orthorhombic, space group D172hCmcm,Z=4). The last example illustrates that the combined Ga/Sn content can be substoichiometric (x+y<1). These compounds have a layered nature, with the chains of Ga or Sn atoms residing between 2[LaSb2] slabs.  相似文献   

8.
Pb2.85Ba2.15Fe4SnO13, a new n=5 member of the anion-deficient perovskite based AnBnO3n−2 (A=Pb, Ba, B=Fe, Sn) homologous series, was synthesized by the solid state method. The crystal structure of Pb2.85Ba2.15Fe4SnO13 was investigated using a combination of neutron powder diffraction, electron diffraction, high angle annular dark field scanning transmission electron microscopy and Mössbauer spectroscopy. It crystallizes in the Ammm space group with unit cell parameters a=5.7990(1) Å, b=4.04293(7) Å and c=26.9561(5) Å. The Pb2.85Ba2.15Fe4SnO13 structure consists of quasi two-dimensional perovskite blocks separated by 1/2[110](1?01)p crystallographic shear (CS) planes. The corner-sharing FeO6 octahedra at the CS planes are transformed into edge-sharing FeO5 distorted tetragonal pyramids. The octahedral positions in the perovskite blocks between the CS planes are jointly taken up by Fe and Sn, with a preference of Sn towards the position at the center of the perovskite block. The chains of FeO5 pyramids and (Fe,Sn)O6 octahedra of the perovskite blocks delimit six-sided tunnels at the CS planes occupied by double chains of Pb atoms. The compound is antiferromagnetically ordered below TN=368±15 K.  相似文献   

9.
Atomistic simulation methods have been used to study the defect chemistry of the complex perovskite oxide Ba3CaNb2O9. Calculations were carried out for the hexagonal (P-3m1) phase and the cubic (Fm-3m) phase. The hexagonal structure is predicted to be energetically more stable at room temperature. In both structures the most favourable dopant for Nb5+ is found to be Ca2+ rather than Mg2+, in contrast to the generally accepted rule that size similarities govern such processes. The diffusion of oxygen vacancies in the hexagonal and cubic phases occurs within different networks of corner-sharing NbO6 and CaO6 octahedra. Irrespective of the arrangement of octahedra, however, migration of oxygen vacancies around NbO6 octahedra takes place with lower activation energies than around the CaO6 octahedra.  相似文献   

10.
The crystal structures of Sn2SbX2I3, with X = S or Se, and Sn3SbSe2I5 are characterized by a statistical disorder of part of the [Sb] and [Sb, Sn] sites. All these crystal structures are built up from infinite ribbons (Sn2X4)n of SnX5 pyramids where X = ((S, Se) and I). The ribbons are weakly linked through Sn … I interactions to give infinite sheets. Between sheets are located [Sb] or [Sb, Sn] atoms in twinned sites.  相似文献   

11.
We have studied the preparation and crystallographic structure of three perovskite-type compounds: Sr3Cr2WO9, cubic, the lattice parameter of which is a = 7.812Å; Ca3Cr2WO9, tetragonal, the lattice parameters of which are a = 5.408 Å and c = 7.635Å; and Ba3Cr2WO9, hexagonal, the lattice parameters of which are a = 5.691 Å and c = 13.957Å. We have compared these three structures and shown the relationship between the dimensions of the alkaline-earth metal and the existence of the different structures.  相似文献   

12.
Contributions to the Investigation of Inorganic Non-stoichiometric Compounds. XXII. New Metastable Block Structures in the System Nb2O5/WO3, Electron Optical Investigation We succeeded in considerably expanding the region of existence of block structures. By substituting W for Nb, while the ratio O/∑M (M ? Nb, W) is kept constant, and starting from the known phases Nb2O5: WO3 = 6:1, 7:3, 8:5 and 9:8 one obtains series of solid solutions whose metastable products of oxidation have block structures too. In contrast to the solid solutions which have the structures of the starting phases i. e. with socalled blocks of [3 × 4], [4 × 4], [4 × 5] and [5 × 5] M? O-octahedra, the products of the oxidation have structures in which some edge sharing octahedra changed their connections to become octahedra sharing corners thus opening up the possibility for the formation of blocks with twice the number of octahedra as before. Rows of these large blocks with e. g. [4 × 6] or [4 × 8] octahedra alternate nonperiodically with rows of smaller blocks of the initial size. Details of these heavily disordered structures could only be discerned with the help of high resolution electron microscopy.  相似文献   

13.
Ba3Sn2P4, a New Inophosphidostannate(III) The new compound Ba3Sn2P4 crystallizes in the monoclinic system, space group P21 (No. 4) with the lattice constants see “Inhaltsübersicht”. Distorted Sn2P6 octahedra are connected by common edges to infinite chains.  相似文献   

14.
The high-temperature hexagonal forms of BaTa2O6 and Ba0.93Nb2.03O6 have P6/mmm symmetry with unit-cell parameters a=21.116(1) Å, c=3.9157(2) Å and a=21.0174(3) Å, c=3.9732(1) Å, respectively. Single crystal X-ray structure refinements for both phases are generally consistent with a previously proposed model, except for displacements of some Ba atoms from high-symmetry positions. The structures are based on a framework of corner- and edge-connected Nb/Ta-centred octahedra, with barium atoms occupying sites in four different types of [0 0 1] channels with hexagonal, triangular, rectangular and pentagonal cross-sections. The refinements showed that the non-stoichiometry in the niobate phase is due to barium atom vacancies in the pentagonal channels and to extra niobium atoms occupying interstitial sites with tri-capped trigonal prismatic coordination. The origin of the non-stoichiometry is attributed to minimisation of non-bonded Ba-Ba repulsions. The hexagonal structure is related to the structures of the low-temperature forms of BaNb2O6 and BaTa2O6, through a 30° rotation of the hexagonal rings of octahedra centred at the origin.  相似文献   

15.
A new Zintl phase Ba3Ga4Sb5 was obtained from the reaction of Ba and Sb in excess Ga flux at 1000°C, and its structure was determined with single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group Pnma (No. 62) with a=13.248(3) Å, b=4.5085(9) Å, c=24.374(5) Å and Z=4. Ba3Ga4Sb5 has a three-dimensional [Ga4Sb5]6− framework featuring large tunnels running along the b-axis and accommodating the Ba ions. The structure also has small tube-like tunnels of pentagonal and rhombic cross-sections. The structure contains ethane-like dimeric Sb3Ga-GaSb3 units and GaSb4 tetrahedra that are connected to form 12- and 14-membered tunnels. Band structure calculations confirm that the material is a semiconductor and indicate that the structure is stabilized by strong Ga-Ga covalent bonding interactions.  相似文献   

16.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

17.
Lithium insertion reactions of monophosphate tungsten bronzes, (PO2)4(WO3)2m and diphosphate tungsten bronzes K(P2O4)2(WO3)2m indicate that a maximum of two Li/W and one Na/W may be inserted in these materials. The phosphate tungsten bronzes are three-dimensional network structures made up of slabs of ReO3-type WO6 octahedra connected by phosphate groups with large interconnected cavities. Ion-exchange reactions of selected members of K(P2O4)2(WO3)2m show that potassium which occupies the large hexagonal tunnels in the lattice may be exchanged for various alkali metal cations. Upon lithium insertion, the metallic host materials become insulating. This is attributed to the filling of the π* conduction band formed by the overlap of Wt2g − 5d and oxygenπ − 2p orbitals.  相似文献   

18.
The new Pb5Sb2MnO11 compound was synthesized using a solid-state reaction in an evacuated sealed silica tube at 650°C. The crystal structure was determined ab initio using a combination of X-ray powder diffraction, electron diffraction and high-resolution electron microscopy (a=9.0660(8)Å, b=11.489(1)Å, c=10.9426(9)Å, S.G. Cmcm, RI=0.045, RP=0.059). The Pb5Sb2MnO11 crystal structure represents a new structure type and it can be considered as quasi-one-dimensional, built up of chains running along the c-axis and consisting of alternating Mn+2O7 capped trigonal prisms and Sb2O10 pairs of edge sharing Sb+5O6 octahedra. The chains are joined together by Pb atoms located between the chains. The Pb+2 cations have virtually identical coordination environments with a clear influence of the lone electron pair occupying one vertex of the PbO5E octahedra. Electronic structure calculations and electron localization function distribution analysis were performed to define the nature of the structural peculiarities. Pb5Sb2MnO11 exhibits paramagnetic behavior down to T=5 K with Weiss constant being nearly equal to zero that implies lack of cooperative magnetic interactions.  相似文献   

19.
(H2O)0.33FeF3, grown by hydrothermal synthesis, crystallizes in the orthorhombic system with cell dimensions a = 7.423(3) Å, b = 12.730(4) Å, c = 7.526(3)Å, and space group Cmcm, Z = 12. The structure, derived from single crystal X-ray diffraction data (605 independent reflections) is refined to R = 0.019 (Rω = 0.021). The framework of the FeIIIF6 octahedra is related to that of hexagonal tungsten bronze (HTB) Rb0.29WO3. At 122°C, zeolithic water is evolved from hexagonal tunnels without any noticeable change of the fluorine skeleton. The related anhydrous compound represents a new form of iron trifluoride which is denoted HTBFeF3; at 525°C, it transforms into the cubic form of ReO3-type. (H2O)0.33FeF3 and HTBFeF3 are antiferromagnetic, with Néel temperatures of TN = 128°7 ± 0.5 K and TN = 97 ± 2 K, respectively.  相似文献   

20.
Thorikosite, (Pb3Sb0.6As0.4)(O30H)Cl2, is a naturally occurring member of the bismuth oxyhalide group isostructural with LiBi3O4Cl2. The space group isI4/mmm witha = 3.919(1)A?,c = 12.854(5)A?, andZ = 1. A crystal structure analysis showed complete solid solution of Pb2+, Sb3+, and As3+ on the single cation site and large atomic temperature factors indicative of pervasive structural disorder. The latter is due to the structural adjustments necessary to accommodate cations of very different sizes in the same site. Thorikosite is closely related to synthetic tetragonal PbSbO2Cl through the coupled substitution Sb3+O2? ? Pb2+(OH)?.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号