首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New potassium-conducting solid electrolytes based on potassium monogallate in the K2?2x Ga2?x V x O4 system are synthesized and studied. It is found that an introduction of V5+ ions leads to a considerable increase in the KGaO2 conductivity due to the formation of vacancies in the potassium sublattice. The conductivity for optimal compositions is approximately 10?3 S cm?1 at 400°C and above 10?2 S cm?1 at 700°C. The results are compared with early obtained data for potassium monogallate dopped with four-charged cations.  相似文献   

2.
Electrophysical properties of single-crystal Li2 + x Fe 2 ? 2x 2+ Fe x 3+ (MoO4)3 (x = 0.22) are studied at 25–400°C. It is found that the conduction is of electronic nature and the conductivity equals 5 × 10-2 S/cm at 300°C. The activation energy for the electron transport is 0.23 eV. The conductance in molybdate Li2.22Fe 1.56 2+ Fe 0.22 3+ (MoO4)3 is markedly anisotropic.  相似文献   

3.
Quasi-one-dimensional (1D) solid solutions Ti1 ? x Fe x (OCH2CH2O)2 ? x/2 (0 < x ≤ 0.1) with the structure of anatase were prepared by heating the glycolate Ti1 ? x Fe x (OCH2CH2O)2 ? x/2 in an atmosphere of air at a temperature of >450°C. The conditions of formation and the properties of the new glycolate Ti3Fe2(OCH2CH2O)9 were described. It was found that the synthesized Ti1 ? x Fe x O2 ? 2x/2 solid solutions exhibit photocatalytic activity in the reaction of hydroquinone oxidation in an aqueous solution on irradiation with UV light. A correlation between the rate of oxidation of hydroquinone and the concentration of iron in the catalyst was established. A procedure for the preparation of titanium dioxide with the structure of anatase doped with iron and carbon (Ti1 ? x Fe x O(2 ? x/2) ? yCy) and also composites on its basis, which contain an excess amount of carbon, was proposed.  相似文献   

4.
In this paper, LiCr x Fe x Mn2−2x O4 (x = 0, 0.05, 0.1) electrode materials were prepared by sol–gel technique and characterized by X-ray diffraction (XRD) and transmission electron microscopy or high-resolution transmission electron microscopy techniques. XRD results reveal that the Cr–Fe-co-doped LiCr x Fe x Mn2−2x O4 materials are phase-pure spinels. The electrochemical properties of the LiMn2O4, LiCr0.05Fe0.05Mn1.9O4, and LiCr0.1Fe0.1Mn1.8O4 electrodes in 5 M LiNO3 aqueous electrolyte were investigated using cyclic voltammetry, AC impedance, and galvanostatic charge/discharge methods. In the current range of 0.5–2 A g−1, the specific capacity of the LiCr0.05Fe0.05Mn1.9O4 electrode is close to that of the LiMn2O4 electrode, but the specific capacity of the LiCr0.1Fe0.1Mn1.8O4 electrode is obviously lower than that of the LiMn2O4 electrode. When the electrodes are charge/discharge-cycled at the high current rate of 2 A g−1, the LiCr0.05Fe0.05Mn1.9O4 electrode exhibits an initial specific capacity close to that of the LiMn2O4 electrode, but its cycling stability is obviously prior to that of the LiMn2O4 electrode.  相似文献   

5.
This contribution is focused on the synthesis, characterization and optical properties of new inorganic pigments which are environment friendly and can substitute some toxic metals in interesting colour compounds. Pyrochlores belong to the group of high-temperature pigments, and are a variety of actual and potential applications for several materials. Examples include catalysts, thermal barrier coatings, solid electrolytes, nuclear waste forms and host materials for luminescence centers. The pigments were prepared by the solid state reaction and also by method of suspension mixing of materials in the series with increasing content of molybdenum. The pigments were applied into organic matrix and ceramic glaze. The colour properties of these applications were investigated depending on content of Mo, method of preparation and temperature of calcination (1350?C1550?°C after step 50?°C). The optimum conditions for their synthesis were determined. The pigments were evaluated from standpoint of their structure, colour and particle sizes. Characterization of Er2Ce2?x Mo x O7 pigments (x?=?0.1, 0.3, 0.5 and 0.7) suggests that they have a potential to be alternative yellow or orange colourants for paints, plastics, ceramics and building materials.  相似文献   

6.
Substitution of Ca by La in initial cubic double perovskite Ba4(Ca2Nb2)O11[VO]1 allowed obtaining phases with a similar structure with a lower content of structural oxygen vacancies, Ba4(La x Ca2 ? x Nb2)O11 + 0.5x [VO]1 ? 0.5x (x = 0.5, 1, 1.5, 2). The impedance technique was used to measure the temperature dependences of conductivity in the atmosphere of dry and humid air. Transport numbers determined using the EMF method in an oxygen-air and water steam concentration cells point to the predominantly hole nature of conductivity in the high-temperature region (T > 600°C) and to predominance of proton conductivity in the low-temperature region. Activation energies of hole and proton conductivity were calculated. Thermogravimetric measurements were carried out under heating from 25 to 1000°C with simultaneous mass-spectrometric determination of evolved H2O and CO2. The properties of the studied Ba4(La x Ca2 ? x Nb2)O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases were compared with the earlier studied Ba4 ? x La x (Ca2Nb2)O11 + 0.5x phases with similar lanthanum content.  相似文献   

7.
Electrocatalysts based on platinized titania modified with ruthenia (0–9 mol %) were studied. The synthesized materials were investigated as working electrodes in potentiometric sensors sensitive to hydrogen and carbon monoxide. All electrocatalysts showed reproducible behavior at pure gas concentrations from 400 to 4000 ppm. In CO-H2 mixtures with comparable concentrations of both gases, the sensors were selective toward hydrogen at ≥0.05 mol % Ru, but not selective to hydrogen or CO at less than 0.05 mol % Ru in the substrate.  相似文献   

8.
A series of La2 − x Sr x CuO4 (x = 0.0, 0.05, 0.15, 0.25 and 0.35) compounds was investigated for the use of direct electrochemical reduction of NO in an all-solid-state electrochemical cell. The materials were investigated using cyclic voltammetry in 1% NO in Ar and 10% O2 in Ar. The most selective electrode material was La2CuO4, which had an activity of NO reduction that was 6.8 times higher than that of O2 at 400 °C. With increasing temperature, activity increased while selectivity decreased. Additionally, conductivity measurements were carried out, and the materials show metallic conductivity behavior which follows an adiabatic small polaron hopping mechanism.  相似文献   

9.
The electric conductivity of perovskite-like Ba2(In1 ? x Al x )2O5 solid solutions (0 < x ≤ 0.20) characterized by structural disordering in the oxygen sublattice was studied as a function of temperature and partial pressure of oxygen in an atmosphere with a low content of water vapors ( $p_{H_2 O}$ = 3 × 10?5 atm). When In3+ was partially replaced by Al3+, the oxygen ion conductivity increased because of the disordering of oxygen structural vacancies, leading to a significant increase in the total electric conductivity of the samples.  相似文献   

10.
Synthesis of fluoro-substituted substances based on brownmillerite Ba2In2O5 is carried out. The width of the homogeneity region of the Ba2In2O5?0.5x F x (0 < x ≤ 0.25) solid solution was established using X-ray analysis. Measurement of temperature dependences of conductivity in atmospheres with different partial pressure of water vapor (pH2O = 3.3 and 2 × 103 Pa) showed an increase in conductivity at T ≤ 550°C in a humid atmosphere, which is due to appearance of proton transport. The dependence of conductivity on partial oxygen pressure (pO2 = 0.21 × 105 to 10?15 Pa) is studied in the temperature range of 500–1000°C; ion transport numbers are calculated. The method of polarization measurements was used to determine transport numbers of fluoride. Total conductivity is divided into ion (proton, oxygen, and fluoride ion) and electron components. Analysis of concentration dependences of conductivities showed that low concentrations of fluoride allow increasing both the total and partial conductivities (oxygen-ion and proton) and, besides, allow shifting the “order-disorder” phase transition by 100°C to the low temperature range.  相似文献   

11.
The hydrogen content in CaZr1 ? x Sc x O3 ? x/2 (x = 0.00–0.20) and BaZr0.9Y0.1O3-α (for comparison) was studied by powder nuclear microanalysis. The samples were saturated with heavy water (D2O) vapors at 350 and 400°C in air. The chemical expansion of the CaZr0.95Sc0.05O3-α and BaZr0.95Y0.05O3-α samples at 700°C was measured at different water vapor pressures. A model was suggested to explain the lowered hydrogen content in oxides based on CaZrO3.  相似文献   

12.
The phase diagram of the binary system tetramethylammonium bromide-water was studied by the differential thermal analysis. In the stable region two phases, ice and the salt itself, were detected, and in the metastable region, three tetramethylammonium bromide hydrates (bromide-water, 1 : 4, mp 68.8°C, 1 : 5, mp 36.0°C, 1 : 7.5, mp ?19.5°C) were found. Formation of (C x H2x+1)4NBr·nH2O (x = 1–3, n = 4, 5, 7.5) hydrates was revealed.  相似文献   

13.
Solid solutions based on rubidium monogallate RbGaO2 with a general formula Rb2?2x Ga2?x A x O4 (A = P, V, Nb, and Ta) are synthesized. Their crystal structure and temperature and concentration dependences of conductivity are studied. The highest rubidium-cationic conductivity is (1.8–3.9) × 10?3 S cm?1 at 400°C and (1.4–2.1) × 10?2 S cm?1 at 700°C. These results are compared with the data for rubidium monogallate doped with four-charged cations and solid solutions based on RbAlO2.  相似文献   

14.
The electrophysical properties of the multicomponent Zn2ZrO4 ? Zn2SnO4 ? ZnFe2O4 system are studied. The electrophysical parameters of solid solutions of Zn2 ? x (Zr a Sn b )1 ? x Fe2x O4 (x = 0–1.0, Δx = 0.1, a + b = 1) are determined. It is found that the formed solid solutions are semiconductors with electrophysical properties that change in a regular fashion with composition and are distinguished by high values of resistivity (107–1012 Ω cm).  相似文献   

15.
The cathode materials of the composition LiNi1 − 2x Co x Mn x O2 (x = 0.1, 0.2. 0.33) synthesized from the Ni, Co, Mn mixed hydroxides and LiOH by using mechanical activation method are studied. It is shown that all synthesized compounds have layered structure described by the space group R-3m. With the decreasing of the nickel content the cell volume and the degree of structure disordering decrease. According to XPS data, the electronic main state of d-ions at the prepared samples’ surfaces corresponds to Ni2+, Co3+, and Mn4+. An increase in the nickel content leads to the increase of the Ni2p 3/2 and Co2p 3/2 binding energy, which points to the change in the Me-O bond covalence. According to magnetic susceptibility measurements data, the nickel ions in LiNi0.6Co0.2Mn0.2O2 exist in the two oxidation states: Ni2+ and Ni3+. It is shown that this sample has the highest specific discharge capacity (∼170 mAh/g). The positions of redox peaks in the differential capacitance curves depend on the sample composition: with the increasing of nickel content they are shifted toward lower voltages. Based on the paper presented in the IX International Conference “Basic Problems of Energy Conversion in Lithium Electrochemical Systems” (Ufa, 2006).  相似文献   

16.
The corundum-type In(2-2x)Zn(x)Sn(x)O(3) solid solution (cor-ZITO, x ≤ 0.7) was synthesized at 1000 °C under a high pressure of 70 kbar. cor-ZITO is a high-pressure polymorph of the transparent conducting oxide bixbyite-In(2-2x)Zn(x)Sn(x)O(3) (x ≤ 0.4). Analysis of the extended X-ray absorption fine structure suggests that significant face-sharing of Zn and Sn octahedra occurs, as expected for the corundum structure type. In contrast to the ideal corundum structure, however, Zn and Sn are displaced and form oxygen bonds with lengths that are similar to those observed in high-pressure ZnSnO(3). Powder X-ray diffraction patterns of cor-ZITO showed the expected unit cell contraction with increased cosubstitution, but no evidence for ilmenite-type ordering of the substituted Zn and Sn. A qualitative second harmonic generation measurement, for the solid solution x = 0.6 and using 1064 nm radiation, showed that Zn and Sn adopt a polar LiNbO(3)-type arrangement.  相似文献   

17.
The lithium-conducting solid electrolytes in the Li4 ? 2x Cd x GeO4 (0 ≤ x ≤ 0.6) system are synthesized. Their crystal structure and temperature and concentration dependences of conductivity are studied. The specimens with the highest conductivity have a γ-Li3PO4-derivative structure. The solid solutions with x = 0.15–0.25 are stable at the room temperature, whereas the specimens with x ≥ 0.3 decompose yielding Li2CdGeO4 below 310 ± 10°C. Li3.6Cd0.2GeO4 solid solution exhibits the highest conductivity (5.25 × 10?2 S cm?1 at 300°C). The factors, which affect the conductivity of synthesized solid electrolytes, are considered.  相似文献   

18.
Structural and magnetic properties of Mg x Zn1−x Fe2O4 powders have been studied with respect to the application for thermal cancer therapy (magnetic hyperthermia). Mg x Zn1−x Fe2O4 (x=0.1–0.5) powders with particle sizes between 5 and 8 nm were produced by citrate method. The X-ray diffraction patterns of the samples correspond to a spinel phase. The lattice constant and the volume of the elementary cell increase when x changes from 0.1 to 0.5. The FTIR-spectra ascertain the spinel phase formation. The Mossbauer studies reveal the presence of extremely small particles, which undergo superparamagnetic relaxation at room temperature. The core-shell model has been applied to explain quadruple doublets. The quadruple splitting at “shells” is bigger than those at “cores” whereas the isomer shifts remain close. Magnetic studies confirm the presence of extremely small particles that behave as superparamagnetic ones.   相似文献   

19.
Single crystals of PrO2 and of the oxygen deficient fluorite related phase TbO2−x have been obtained by anodic electrocrystallization from alkaline hydroxide melts containing PrCl3 and TbCl3, respectively. Magnetic measurements, X-ray diffraction data and TEM investigations confirm the identity of the products. PrO2 crystallizes in a fluorite type of structure with a=5.3945(3) Å and shows paramagnetic behaviour with a magnetic moment as expected for Pr4+ (μeff=2.49μB, Θ=−109 K, TN=10 K). According to precession photographs and an examination with an area sensitive X-ray detector, TbO2−x exhibits a superstructure of fluorite with a pseudocubic subcell with af=5.2810(1) Å. This lattice constant is intermediate between those of TbO2 and Tb2O3 (C-type), the same is true for its paramagnetic behaviour (μeff=8.58μB, Θ=−22 K, TN=5 K). The supercell was found to be hexagonal with a=25.836(1) Å and c=36.672(2) Å, the symmetry of the intensity distribution being monoclinic. Electron diffraction revealed a cubic cell with a=10.6 Å, space group Ia-3, indicating reduction of the material in the electron beam.  相似文献   

20.
New potassium-conducting solid electrolytes of the K3 ? 2x Cd x PO4 system are synthesized and studied. A wide range of solid solutions reaching x ≈ 0.35 with the structure of high-temperature modification of potassium orthophosphate forms in the system. An addition of cadmium ions leads to an abrupt increase in the K3PO4 conductivity due to the formation of potassium vacancies. The highest conductivity is approximately 10?2 S cm?1 at 300°C and above 10?1 S cm?1 at 700°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号