首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Energy transfer studies have been made in a terbium-erbium coactivated calibo-glass system at room temperature and at liquid-air temperature. A study of the emission and decay of 5D4 level of Tb3+ has been made by varying the acceptor (Er3+) concentration. Probabilities and efficiencies of energy transfer as well as donor-acceptor distances have been calculated. At low acceptor concentration the decay of the donor (Tb3+) emission has been found to be diffusion limited. At high acceptor concentration the mechanism governing the transfer is found to be dipole-dipole.  相似文献   

2.
Energy transfer from UO22+ to Sm3+ is described. The transfer efficiencies are calculated from the decrease of donor luminescence and lifetimes and from the increase of the acceptor fluorescence. It is shown that the transfer is nonradiative. The energy transfer efficiencies are greater when the donor is excited at higher energy levels due to stronger overlap between electronic levels of donor UO22+ and acceptor Sm3+. From the comparison of energy transfer efficiencies from UO22+ to Sm3+ and Eu3+ it is deduced that the overlap between excitation levels of donor and acceptor is a sufficient condition for the transfer.  相似文献   

3.
Energy transfer from Bi3+ to Nd3+ is reported in germanate glass. It was found that the excitation range and intensities of the 4F324I92, 4I112 emissions are increased several fold when excited through 1S03P1 absorption of Bi3+. It is shown that the energy transfer is nonradiative. The energy transfer probability and efficiency were calculated from the Bi3+ fluorescence decay rates and intensities. The Bi3+ → Nd3+ energy transfer may be utilized in Nd3+ glass laser.  相似文献   

4.
Intense 2.7 μm emission derived from modified Er3+ doped germanate glass was reported. Raman spectrum analysis was carried out to grasp glass structure. Based on the absorption spectrum, the Judd–Ofelt parameters and radiative properties were calculated originated from Judd–Ofelt theory. 2.7 μm emission characteristics, stark splitting features and energy transfer processes upon excitation of a conventional 808 nm or 980 nm laser diode were carefully investigated. The prepared glass possesses high spontaneous transition probability (34.28 s−1), large calculated emission cross section (13 × 10−21 cm2) and gain coefficient (5.4 cm−1) for the 4I11/2 → 4I13/2 transition. These results indicate that Er3+ doped germanate glass has potential applications in mid-infrared lasers and amplifiers.  相似文献   

5.
Developing multiplex sensing technique is of great significance for fast sample analysis. However, the broad emissions of most chemiluminescence(CL) luminophores make the multiplex CL analysis be difficult. In this work, a simple and sensitive CL analytical method has been developed for the simultaneous determination of Tb3+and Eu3+thanking to their narrow band emission. The technique was based on a mixed CL system of periodate(IO4-)-hydrogen peroxide(...  相似文献   

6.
The Dy3+ or/and Sm3+ doped LiLa(WO4)2 phosphors are synthesized by a facile solid state reaction method. The phase and luminescence properties of the phosphors are investigated. The powder X-ray diffraction (XRD) results show that the phosphor has a tetragonal phase crystal structure. The quenching concentration of single doped Dy3+ and Sm3+ in the LiLa(WO4)2 are determined to be 6% and 3%, respectively. Under the excitation of 404 nm, warm white light is obtained in the co-doped phosphors. With the concentration of Sm3+ increasing, the correlated color temperature (CCT) gradually decreases from 3090 to 2453 K. Two kinds of energy transfer may exist at the same time. The overlap between the emission spectrum of Dy3+ and the excitation spectrum of Sm3+ reveals that the energy of Dy3+ can transfer to Sm3+ via radiation. Another way of energy transfer, that is non-radiative energy transfer, is attributed to the excited state of Dy3+ (4F9/2) slightly higher than that of Sm3+ (4I19/2). The calculation results show that non-radiative energy transfer process from Dy3+ to Sm3+ ions is predominated by quadrupole–quadrupole interaction.  相似文献   

7.
By using a hydrothermal method, a series of Eu3+ concentration dependent GdF3 nanocrystals have been synthesized. The crystalline structures of samples are characterized by XRD patterns, the morphology and size of the samples are illustrated by FE-SEM images, and the optical properties of the samples are presented by PL excitation and emission spectra. The energy transfer from host Gd3+ to Eu3+ is observed in the Eu3+ doped GdF3 nanocrystals. The optical properties of Eu3+ and the energy transfer efficiency from host Gd3+ to Eu3+ are discussed on the basis of the Eu3+ concentration dependent integrated PL excitation and emission spectra of Gd3+ and Eu3+. The discussion on optical properties of Eu3+ and the energy transfer from Gd3+ to Eu3+ is meaningful to design and synthesize Gd3+ based compounds.  相似文献   

8.
Potential-energy surfaces for various channels of the HNO+NO2 reaction have been studied at the G2M(RCC,MP2) level. The calculations show that direct hydrogen abstraction leading to the NO+cis-HONO products should be the most significant reaction mechanism. Based on TST calculations of the rate constant, this channel is predicted to have an activation energy of 6–7 kcal/mol and an A factor of ca. 10−11 cm3 molecule−1 s−1 at ambient temperature. Direct H-abstraction giving NO+trans-HONO has a high barrier on PES and the formation of trans-HONO would rather occur by the addition/1,3-H shift mechanism via the HN(O)NO2 intermediate or by the secondary isomerization of cis-HONO. The formation of NO+HNO2 can take place by direct hydrogen transfer with the barrier of ca. 3 kcal/mol higher than that for the NO+cis-HONO channel. The formation of HNO2 by oxygen abstraction is predicted to be the least significant reaction channel. The rate constant calculated in the temperature range 300–5000 K for the lowest energy path producing NO+cis-HONO gave rise to © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 729–736, 1998  相似文献   

9.
Lanthanide upconversion luminescence in nanoparticles has prompted continuous breakthroughs in information storage, temperature sensing, and biomedical applications, among others. Achieving upconversion luminescence at the molecular scale is still a critical challenge in modern chemistry. In this work, we explored the upconversion luminescence of solution dispersions of co-crystals composed of discrete mononuclear Yb(DBM)3Bpy and Eu(DBM)3Bpy complexes (DBM: dibenzoylmethane, Bpy: 2,2′-bipyridine). The 613 nm emission of Eu3+ was observed under excitation of Yb3+ at 980 nm. From the series of molecular assemblies studied, the most intense luminescence was obtained for a 1 : 1 molar ratio of Yb3+ : Eu3+, resulting in a high quantum yield of 0.67 % at 2.1 W cm−2. The structure and energy transfer mechanism of the assemblies were fully characterized. This is the first example of an Eu3+-based upconverting system composed of two discrete mononuclear lanthanide complexes present as co-crystals in non-deuterated solution.  相似文献   

10.
The structural and optical properties of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphors prepared by chemical route have been explored. The crystalline structures of the prepared phosphors have been investigated with the help of X-ray diffraction analysis. The presence of different vibrational modes and absorption bands arising due to the transitions from the ground state to different excited states of rare earth ions have been identified using the Raman and UV-VIS-NIR absorption spectra of the developed phosphor, respectively. The concentration quenching effect on the luminescence property of the prepared materials has been explained in detail. The upconversion luminescence property of the Er3+-Tm3+-Yb3+codoped CaMoO4 phosphor annealed at different temperatures under 980 nm and 808 nm excitations have been reported. The energy transfer Er3+ → Tm3+, Yb3+ → Er3+ and Tm3+ has been found to be responsible for efficient UC emission. The dipole-dipole interaction is observed to be responsible for the concentration quenching of the luminescence intensity. The effect of annealing temperature on the upconversion luminescence property has been explained in detail. The results suggest that the developed tri-doped phosphor may be suitable in making the efficient NIR to visible upconverter and lighting based optical devices.  相似文献   

11.
A series of Tm3+ and Dy3+ codoped BaWO4 phosphors with tunable shapes were controllably synthesized by a facile solvothermal method. The effects of ratio of ethylene glycol (EG) and water on the morphologies of BaWO4 structures are systematically studied. It was discovered that the reason for these morphological changes is based on the reaction speed of the kinetic control, which relates to the strong chelating abilities of ethylene glycol. And when the solvent is pure ethylene glycol, the peanut-like BaWO4:Dy3+ has the strongest emission intensity. Moreover, the emission color of the phosphors varied from blue (0.232, 0.180) to white (0.268, 0.250) by controlling Dy3+ ions content with a fixed Tm3+ concentration. The energy transfer mechanism was investigated in detail. With increasing the doped concentration of Dy3+ ions, the energy transfer efficiency of BaWO4:0.005Tm3+,yDy3+ increased gradually and reached as high as 63% when the Dy3+ doped concentration is 0.03. The critical distance RC calculated by the spectral overlap method is about 19.93 Å, and it is in good agreement with that obtained using the concentration quenching method (19.70 Å), indicating that the electric dipole-dipole interaction is the main energy transfer mechanism for BaWO4:Tm3+,Dy3+ phosphors.  相似文献   

12.
Photocatalysis reactions using [RuII(bpy)3]2+ were studied on the example of visible‐light‐sensitized reversible addition–fragmentation chain transfer (RAFT) polymerization. Although both photoinduced electron‐ and energy‐transfer mechanisms are able to describe this interaction, no definitive experimental proof has been presented so far. This paper investigates the actual mechanism governing this reaction. A set of RAFT agents was selected, their redox potentials measured by cyclic voltammetry, and relaxed triplet energies calculated by quantum mechanics. Gibbs free‐energy values were calculated for both electron‐ and energy‐transfer mechanisms. Quenching rate constants were determined by laser flash photolysis. The results undoubtedly evidence the involvement of a photoinduced energy‐transfer reaction. Controlled photopolymerization experiments are discussed in the light of the primary photochemical process and photodissociation ability of RAFT agent triplet states.  相似文献   

13.
A series of Eu3+ ions co-doped (Gd0.9Y0.1)3Al5O12:Bi3+, Tb3+ (GYAG) phosphors have been synthesized by means of solvothermal reaction method. The XRD pattern of GYAG phosphor sintered at 1500 °C confirms their garnet phase. The luminescence properties of these phosphors have been explored by analyzing their excitation and emission spectra along with their decay curves. The excitation spectra of the GYAG:Bi3+, Tb3+, Eu3+ phosphors consists of broad bands in the shorter wavelength region due to 4f8 → 4f75d1 transition of Tb3+ ions overlapped with 6s2 → 6s16p1 (1S0 → 3P1) transition of Bi3+ ions and the charge transfer band of Eu3+–O2?. The present phosphors exhibit green and red colors due to 5D4 → 7F5 transition of Tb3+ ions and 5D0 → 7F1 transition of Eu3+ ions, respectively. The emission was shifted from green to red color by co-doping with Eu3+ ions, which indicate that the energy transfer probability from Tb3+ to Eu3+ ions are dependent strongly on the concentration of Eu3+ ions.  相似文献   

14.
以P123为表面活性剂,异丙醇铝为铝源,用简易溶胶-凝胶法,获得了单掺和双掺Gd3+,Eu3+的介孔氧化铝组装体。用广角X-射线衍射仪(WAXD)进行了物相分析;小角X-射线衍射仪(SAXD)、比表面仪进行了孔结构分析和形貌表征;研究了组装体的发光性能并发现Gd3+对Eu3+有能量传递作用,并分析了能量传递过程。  相似文献   

15.
《Polyhedron》1987,6(1):101-103
Ligand substitution properties of the recently characterized pale-yellow [Ir(H2O)6]3+ ion in perchlorate solutions, have been investigated. At 120°C in sealed tubes observations on the exchange with H218O are impaired by a spurious oxidation to purple Ir(IV). Over extended periods at 40°C the ion has been shown to be extremely inert, and the rate constants for substitution of Cl into [Ir(H2O)6]3+ is estimated to be < 2 × 10−9 M−1 S−1.  相似文献   

16.
《Chemical physics letters》1986,129(5):439-445
The reaction between CH3 and D has been studied by laser flash photolysis, using absorption and resonance fluorescence to monitor decay of CH3 and D, with [CH3] ⪢ [D]. A rate constant k2 = (1.75 ± 0.045) × 10−10 cm3 molecule−1 s−1 was obtained for 50 ⩽ P ⩽ 600 Torr, 289 ⩽ T ⩽ 401 K. Absence of a pressure dependence in k2 demonstrates that the reaction is at its high-pressure limit, because of preferential fragmentation of CH3D into CH2D + H. Decay of D is shown to be free from complications at 300 K, but at 400 K regeneration of D by reaction between OD and D2 has to be included explicitly. Results were analysed by a numerical method according to a scheme which includes this and other, less important, reactions, k2 shows no dependence on [D2] over a tenfold range. The value calculated from k2 for the limiting high pressure rate constant for CH3 + H is at least a factor of two lower than that obtained by extrapolation of rate data from similar experiments on CH3 + H.  相似文献   

17.
Energy-transfer processes in EuMgAl11O19, which has a two-dimensional Eu3+ sublattice, have been evaluated. The Eu3+ ion occupies at least four different sites, between which energy transfer occurs. Above 17 K energy migration occurs over the Eu3+ sublattice to quenching centers. The characteristics of this process can be explained using two-dimensional migration models. In the region up to 80 K the migration proved to be a two-site nonresonant two-phonon-assisted process.  相似文献   

18.
《Chemical physics》2005,308(1-2):135-145
Single crystals of U4+:CsCdBr3 were grown by the Bridgman–Stockbarger technique. It has been assumed, that U4+ ions are substituting two Cd2+ ions and possess the C3v site symmetry. Thirty seven energy levels, located between 4000 and 25,000 cm−1 and encompassing all but the 1S0 multiplet, were assigned from 7 K absorption spectra. The symmetry of the levels were determined on the basis of the observed small splitting of the Γ3 doublets as well as by a comparison of low temperature absorption spectra of the U4+:CsCdBr3 with that previously reported for U4+ in Cs2UBr6 and Cs2ZrBr6 single crystals. A crystal-field analysis was performed by fitting eight atomic (in the orthogonal formalism) and 6 crystal-field parameters to the experimental Stark levels with an r.m.s. deviation of 100 cm−1. The obtained values of the Hamiltonian parameters are discussed and compared with those reported in previous analyses of U4+ ions. The relatively strong crystal field, resulting in Nv = 8530 cm−1 proves that in the CsCdBr3 crystals the U4+ ions are located at a high symmetry site.  相似文献   

19.
A theoretical investigation on the rates of electron-transfer processes QI + QII → QI + QII and QI + QII → QI + Q2−II was carried out by using the Marcus theory of long-range electron transfer in solution. The molecular reorganizational parameter λ, the free-energy change ΔG0 for the overall reaction, and the electronic matrix element HDA for these two processes were calculated from the INDO-optimized geometries of molecules QI, QII, and histidine. QI and QII are plastoquinones (PQ) which are hydrogen-bonded to a histidine each, and the two histidines may or may not be coordinated to a Fe2+ ion. The plastoquinone representing QI is additionally flanked by two peptide fragments. Each of the species (Pep)2QI · His and His · QII has been considered to be immersed in a dielectric continuum that represents the surrounding molecules and protein folds. INDO calculations confirm the standard reduction potential for the first process (calculated 0.127 V; observed 0.13 V) and predict a midpoint potential of 0.174 V for the second process at 300 K at pH 7 (experimental value remains uncertain but is known to be close to 0.13 V). The plastoquinone fragment carries almost all the net charge (about 95.7%) in [PQ · His] and the net charge in [PQH · His]. The electron is transferred effectively from the plastoquinone part of [(Pep)2QI · His] to the plastoquinone moiety of QII · His in the first step and to the plastoquinone fragment of HisH+ · QII in the second step. Therefore, we made use of the formula for the rate of through-space electron transfer from QI to QII (and to QII). The plastoquinones are, of course, electronically coupled to histidines, and the transfer is, in reality, through the molecular bridge consisting of histidines and also Fe2+. The through-bridge effect is inherent in our calculation of ΔG0, HDA, and the reorganization parameter λ. We investigated the correlation between half-times for the transfer and (D−1opD−1s), where Dop and Ds are, respectively, optical and static dielectric constants of the condensed phase in the vicinity of the plastoquinones. We found that with reasonable values of Dop (2.6) and Ds (8.5) the experimental rates are adequately explained in terms of transfers from the plastoquinone moiety of QI to that of QII. The t1/2 values calculated for the two processes are 247 and 472 μs in the absence of Fe2+ and 134 and 181 μs in the presence of Fe2+. These are in good agreement with the observed values which are ≈ 100 and ≈ 200 μs when Fe2+ is present in the matrix and which are known to be almost twice as large when the Fe2+ is evicted from the matrix. The present work also shows that the Marcus-Hush theory of long-range electron transfers can be successfully applied to the investigation of processes occurring in a semirigid condensed phase like the thylakoid membrane region. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
The equilibrium constant, Keq of the reaction NO2 + NO3 + M 2 N2O5 + M has been determined for a small range of temperatures around room temperature in air at 740 torr by direct spectroscopical measurements of NO2, NO3, and N2O5. At 298 K, Keq was determined as (3.73 ± 0.61) × 10−11 cm3 molecule−1. Averaging this and 11 other independent evaluations of Keq yields Keq = (3.31 ± 0.82) × 10−11 cm3 molecule−1, where the uncertainty is given as one standard deviation. The kinetics of the O3/NO2/N2O5/NO3/ air system was studied in a static chamber at room temperature and 740 torr total pressure. Evidence of a unimolecular decay reaction of NO3, NO3 → NO + O2, was found and its rate coefficient was estimated as (1.6 ± 0.7) × 10−3 s−1 at 295 ± 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号