首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A linear free hydroelastic vibration analysis of a frictionless liquid with a free surface contained in a cylindrical tank with a flexible bottom has been performed. The side-wall has been treated as rigid and the effect of surface tension taken into consideration. The container bottom was treated as a membrane, while for the free liquid surface the effect of two contact line conditions has been investigated. One edge condition was that of a slipping contact line, while the other one treated the contact line as fixed, ie., an anchored edge. The vibration characteristics of a membrane-liquid coupled system have been investigated for various system parameters, i.e., membrane tension parameter T, liquid surface tension parameter σ, material density parameter ρ, liquid height ratio ?0 and vibration mode numbers m and n. The degree of coupling between a membrane and a liquid was represented with vibration mode diagrams as well as with frequency diagrams. For axisymmetric coupled vibrations with anchored edge condition, vibration mode exchanging of both a membrane and liquid free surface with membrane bottom tension parameter T has been investigated. An interesting phenomenon which is only observed for a flexible bottom container and an anchored edge free surface condition is presented.  相似文献   

2.
The problem of detecting a permeable stratum blocked by a mudcake with the help of acoustic measurements inside a borehole is considered. Different physical models of the mudcake are compared: in the form of a highly viscous liquid layer, in the form of a soft elastic shell, and in the form of an elastic shell fixed in an arbitrary way to the borehole walls. Numerical calculations are presented for the wave field in a borehole.  相似文献   

3.
An analytic approximation method known as the homotopy analysis method (HAM) is applied to study the nonlinear hydroelastic progressive waves traveling in an infinite elastic plate such as an ice sheet or a very large floating structure (VLFS) on the surface of deep water. A convergent analytical series solution for the plate deflection is derived by choosing the optimal convergencecontrol parameter. Based on the analytical solution the effects of different parameters are considered. We find that the plate deflection becomes lower with an increasing Young’s modulus of the plate. The displacement tends to be flattened at the crest and be sharpened at the trough as the thickness of the plate increases, and the larger density of the plate also causes analogous results. Furthermore, it is shown that the hydroelastic response of the plate is greatly affected by the high-amplitude incident wave. The results obtained can help enrich our understanding of the nonlinear hydroelastic response of an ice sheet or a VLFS on the water surface.  相似文献   

4.
This paper is concerned with the radiation of sound waves from a submerged cylindrical body which is coated by an imperfect elastic layer; that is, the coating only covers part of the cylinder. The focus of the study is to quantify the effect of the gap in the elastic layer on the radiated acoustic power. A finite element method is employed to determine the acoustic pressure field in the fluid and the displacement field in the coupled layer. This reveals that the effect of a modest sized gap in the coating does not markedly alter the radiated field except at distinct frequencies, at which values the coating exhibits strong fluid-coupled oscillations. We develop a simple analytical model to explain the resonance phenomenon and show that quasi-resonances arise when the wavelength of the deformation pattern ‘matches’ the azimuthal length of the surface of the coating. This resonant behaviour is conveniently captured by a single parameter Q, which is the ratio of the typical inertial fluid pressure induced by the wall oscillation to the stiffness of the elastic coating. For each choice of material parameters, there is shown to be an infinite set of values of Q corresponding to distinct quasi-resonance mode numbers. The effects on the radiated field due to variations in various physical parameters, such as acoustic wavenumber and elastic layer inertia, are also discussed.  相似文献   

5.
Machado JC  Valente JS 《Ultrasonics》2003,41(8):605-613
The oscillations of gas bubbles, without shell, immersed in viscoelastic liquids and driven by an acoustic wave have been the subject of several investigations. They demonstrate that the viscosity coefficient and the spring constant of the liquid have significant influence on the scattering cross section of the gas bubble. For shell-encapsulated gas bubbles, the investigations have been concentrated to bubbles immersed in a pure viscous liquid. This present work computes the ultrasonic scattering cross section, first and second harmonics, of shell-encapsulated gas bubbles immersed in a viscoelastic liquid. The theoretical model of the bubble oscillation is based on the generalized Rayleigh-Plesset equation of motion of a spherical cavity immersed in a viscoelastic liquid represented by a three-parameter linear Oldroyd model. The scattering cross section is computed for Albunex type of bubble (shell thickness=15 nm, shell shear viscosity=1.77 Pas, shell modulus of rigidity=88.8 MPa) irradiated by a 3.5 MHz ultrasonic pressure wave with an amplitude of 30 kPa. The results demonstrate that encapsulated bubbles respond independently of the surrounding liquid being pure viscous or viscoelastic as long as the surrounding liquid shear viscosity is as low as 10(-3) Pas. Nevertheless, for higher shear viscosities, the bubble responds differently if the surrounding liquid is pure viscous or viscoelastic. In general, the scattering cross sections of first and second harmonics are larger for the viscoelastic liquid.  相似文献   

6.
Cochlear mechanics: analysis for a pure tone   总被引:1,自引:0,他引:1  
A three-dimensional hydroelastic model of the cochlea is analyzed, in which the fluid is viscous and the basilar membrane is an inhomogeneous orthotropic elastic plate. After the solution is obtained using a multiple-scale approximation, comparison is made with experiment for the human cochlea.  相似文献   

7.
A dispersion relation is derived and analyzed for the spectrum of capillary motion at a charged flat surface of viscous liquid covering a solid substrate with a layer of finite thickness. It is shown that for waves whose wavelengths are comparable with the layer thickness, viscous damping at the solid bottom begins to play an important role. The spectrum of capillary liquid motion established in this system has high and low wave number limits. The damping rates of the capillary liquid motion with wave lengths comparable with the layer thickness are increased considerably and the Tonks-Frenkel instability growth rates are reduced compared with those for a liquid of infinite depth. Zh. Tekh. Fiz. 67, 27–33 (August 1997)  相似文献   

8.
A mathematical model is proposed for a Kirchhoff–Love-type nonlinear elastic cylindrical shell surrounded by an elastic medium and containing a viscous incompressible liquid. The model is used to analyze wave processes both analytically and numerically. On the basis of the proposed computational algorithm, a software package is developed, which makes it possible to plot diagrams and to obtain numerical solutions to Cauchy problems with initial conditions taken in the form of exact solutions to dynamic equations of shells in the absence of the liquid.  相似文献   

9.
The theory of a boundary layer near the periodically oscillating free surface of a spherical viscous liquid layer over a solid core (bottom) is modified. Two boundary layers are considered to adequately describe a liquid viscous flow in the system: one at the free surface of the liquid and the other at the solid bottom. The thicknesses of the boundary layers are estimated, which provide any given discrepancy between an exact solution to the model problem and a solution obtained in the small viscosity approximation. Taking into account the boundary layer near the solid bottom is shown to be significant only for lower oscillation modes. For higher modes, the flow near the core can be considered potential. In the case of lower modes and shallow liquid, the surface and bottom boundary layers overlap and an eddy flow occupies the entire volume of the liquid.  相似文献   

10.
We analyzed the stress-driven mechanism of MBE Si whisker growth. It is shown that the driving force for MBE whisker growth is determined by the relaxation of elastic energy stored in the overgrown layer Ls due to gold intrusion. In this case the supersaturation is determined by the interplay between elastic stresses and surface energy. The latter is considerably decreased due to decoration of the Si surface by gold resulting in formation of thin liquid Si/Au eutectic layer. This suggests that in our case the Si supersaturation is not an independent growth parameter as it is in the chemical vapor deposition growth method. Instead it is determined by stress in the overgrown Si layer. This approach allows us to explain quite well the growth kinetic and the relationship between the radius and the length of the whiskers. The whisker growth in our case can be considered as a stress relaxation mechanism, where the stress relaxation occurs due to transition from the two-dimensional system to the three-dimensional one.  相似文献   

11.
The case of linear dispersion is investigated and a soliton solution is constructed for the problem of wave propagation in a system consisting of a liquid-filled elastic cylindrical shell. The dependence of the solution on the parameter characterizing the mutual influence of the shell and the liquid inside it is studied.  相似文献   

12.
Dispersion relations are determined for circumferential waves propagating in a layered, circular cylinder by using shell equations to approximate the behavior of the outer layer. These equations include the effects of transverse shear deformation and rotatory inertia. The cylinder consists of an elastic core in smooth contact with a hollow, circular cylinder of distinctly different elastic properties. Two distinct modes exist as the shell thickness reduces to zero. One mode is recognized to be surface waves on the convex cylindrical surface of the core; the second mode is associated with long longitudinal waves in the shell. The approximate dispersion curves for these modes are compared with curves obtained by employing elasticity equations for the layer. As the curvature increases, the agreement of the two theories becomes progressively poorer whether or not any disagreement exists for the case of no curvature. The agreement of the two theories is better when the layer is relatively stiff than when the layer is relatively soft. The shell equations simplify the calculations necessary to produce the dispersion curves.  相似文献   

13.
Propagation of waves in a cylindrical bore filled with viscous liquid embedded in a microstretch elastic medium is investigated. Frequency equation for the surface wave propagation near the surface of the cylindrical bore is obtained, characterizing the dispersive nature of the wave. Significant effects of viscosity, microstretch and micropolarity are observed. Some special cases have been deduced.  相似文献   

14.
This paper presents a front-tracking method for studying the large deformation of a liquid capsule enclosed by a thin shell in a shear flow. The interaction between the fluid and the shell body is accomplished through an implicit immersed boundary method. An improved thin-shell model for computing the forces acting on the shell middle surface during the deformation is described in surface curvilinear coordinates and within the framework of the principle of virtual displacements. This thin-shell model takes full account of in-plane tensions and bending moments developing due to the shell thickness and a preferred three-dimensional membrane structure. The approximation of the shell middle surface is performed through the use of the Catmull–Clark subdivision surfaces. The resulting limit surface is C2-continuous everywhere except at a small number of extraordinary nodes where it retains C1 continuity. The smoothness of the limit surface significantly improves the ability of our method in simulating capsules enclosed by hyperelastic thin shells with different shapes and physical properties. The present numerical technique has been validated by several examples including an inflation of a spherical shell and deformations of spherical, ellipsoidal and biconcave capsules in the shear flow. In addition, different types of motion such as tank-treading, swinging, tumbling and transition from tumbling to swinging have been studied over a range of shear rates, viscosity ratios and bending modulus.  相似文献   

15.
The acoustic backscatter of encapsulated gas-filled microbubbles immersed in a weak compressible liquid and irradiated by ultrasound fields of moderate to high pressure amplitudes is investigated theoretically. The problem is formulated by considering, for the viscoelastic shell of finite thickness, an isotropic hyperelastic neo-Hookean model for the elastic contribution in addition to a Newtonian viscous component. First and second harmonic scattering cross-sections have been evaluated and the quantitative influence of the driving pressure amplitude on the harmonic resonance frequencies for different initial equilibrium bubble sizes and for different encapsulating physical properties has been determined. Conditions for optimal second harmonic imaging have been also investigated and some regions in the parameters space where the second harmonic intensity is dominant over the fundamental have been identified. Results have been obtained for albumin, lipid and polymer encapsulating shells, respectively.  相似文献   

16.
The existing concepts of the boundary layer arising near the free surface of a viscous liquid, which is related to its periodic motion, are revised with the aim to calculate finite-amplitude linear oscillations of a viscous liquid charged drop. Equations complementing the boundary layer theory are derived for the vicinity of the oscillating free spherical surface of the drop. An analytical solution to these equations is found, comparison with an exact solution is made, and an estimate of the boundary layer thickness is obtained. The domain of applicability of the modified theory is defined.  相似文献   

17.
Viscous liquid layer motion between a probe with a tip shaped as a paraboloid of revolution and a surface is considered for semicontact-mode operation of a scanning probe microscope. The presence of a viscous liquid layer leads to energy dissipation and is one of the factors responsible for the decrease in the probe oscillation amplitude. The Reynolds equation for viscous liquid motion is used to obtain an analytic solution to the problem. The formula derived for the loss is compared with experimental data obtained for probes and layers with various curvature radii and viscosities.  相似文献   

18.
A nonlinear dynamic state equation of waterlike porous material that contains a system of cylindrical capillaries partially filled with viscous liquid was received. It is shown that an acoustic nonlinearity of such media contains the relaxation elastic and inelastic components due to the nonlinear dependence of the capillary and viscous pressure in fluid on the capillary diameter. For the medium, theoretical study of such nonlinear phenomena as generation of the second harmonic and a difference frequency wave, self-demodulation of high-frequency pulses as well as the change in the propagation velocity and absorption coefficient of a test wave being under an action of static loading have been carried out. The frequency dependences of medium nonlinearity parameters for these processes were determined.  相似文献   

19.
Xin Zhang  Fugen Wu 《Physics letters. A》2010,374(9):1192-1196
We investigated waveguides in acoustic band-gap materials consisting of steel cylinders in a liquid with viscous damping. Numerical results show that when the viscous penetration depth is comparable to the structural length scale, linear defect states fall in complete acoustic band gaps forming waveguides. It is also found that the magnitude of the viscosity in the liquid has an influence on the frequency of waveguides, that large viscous damping can make the defect modes ascend. An expected frequency of waveguides can be obtained by modulating the viscous damping parameter θ.  相似文献   

20.
The steady flow of an incompressible viscous fluid due to a rotating disk in a nanofluid is studied. The transformed boundary layer equations are solved numerically by a finite difference scheme, namely the Keller-box method. Numerical results for the flow and heat transfer characteristics are obtained for various values of the nanoparticle volume fraction parameter φ and suction/injection parameter h0. Two models for the effective thermal conductivity of the nanofluid, namely the Maxwell-Garnett model and the Patel model, are considered. It is found that for the Patel model, the heat transfer rate at the surface increases for both suction and injection, whereas different behaviors are observed for the Maxwell-Garnett model, i.e. increasing the values of φ leads to a decrease in the heat transfer rate at the surface for suction, but increases for injection. The results of this study can be used in the design of an effective cooling system for electronic components to help ensure effective and safe operational conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号