首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic stress intensity factor history for a half plane crack in anotherwise unbounded elastic body,with the crack faces subjected to a tractiondistribution consisting of two pairs of combined mode point loads that move in adirection perpendicular to the crack edge is considered.The analytic expression for thecombined mode stress intensity factors as a function of time for any point along thecrack edge is obtained.The method of solution is based on the application of integraltransform together with the Wiener-Hopf technique and the Cagniard-de Hoop method.Some features of the solution are discussed and graphical results for various point loadspeeds are presented.  相似文献   

2.
The mode I extension of a half plane crack in a transversely isotropic solid under 3-D loading is analyzed. Firstly, the fundamental problem that the crack is subjected to a pair of unit point loads on its faces is considered. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener–Hopf technique. The Cagniard–de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Based on the fundamental solution, the stress intensity factor history due to general loading is then obtained. Some features of the solutions are discussed through numerical results.  相似文献   

3.
赵晓华 《力学季刊》2000,21(4):462-469
讨论一对集中力作用下横观各向同性体三维裂纹的瞬态扩展问题,其解答构成三维裂纹瞬态扩展问题的基本解。求解方法是基于积分变换技术,将混合边值问题化为Wiener-Hopf型积分方程,求得了裂纹所在平面应力和位移的封闭形式解。进一步利用Abel定理和Cagniard-de Hoop方法,求得了动态应力强度因子的精确解。最后通过数值结果揭示了横观各向同性材料三维扩展裂纹尖端场的动态特性。  相似文献   

4.
Three-dimensional analysis of a half plane crack in a transversely isotropic solid is performed. The crack is subjected to a pair of normal point loads moving in a direction perpendicular to the crack edge on its faces. Transform methods are used to reduce the boundary value problem to a single integral equation that can be solved by the Wiener-Hopf technique. The Cagniard-de Hoop method is employed to invert the transforms. An exact expression is derived for the mode I stress intensity factor as a function of time and position along the crack edge. Some features of the solution are discussed through numerical results. The project supported by the Guangdong Provincial Natural Science Foundation and the Science Foundation of Shantou University  相似文献   

5.
The weight function method is applied to obtain the stress intensity factor for a semi-elliptical surface crack in a circular edge notch subjected to polynomial loading on the crack faces. The crack region is considered as two sets of orthogonal slices superimposed such that the boundary conditions are satisfied. Numerical results are presented for different aspects ratios of the semi-elliptical surface crack in a notched semi-infinite region and compared with those found from the method of finite element.  相似文献   

6.
A generalized variational approach together with eigenfunction expansion is applied to determine the stress intensity factors for interface crack in finite size specimen. Application is also made of the complex potentials such that a complex stress intensity factor with components corresponding to the Mode I and II stress intensity factors can be identified with one of the leading coefficients in the eigenfunction expansion. Obtained are the numerical values of the stress intensity factors for an interface edge crack in a bimaterial rectangular specimen. The outside boundary is subjected to uniform stress normal and parallel to the crack. Solutions are also obtained for the same crack aand specimen geoinetry is subjected to a pair of equal and opposite concentrated forces along the open end away from the edge crack. The third example pertains to the case of three-point bending where the centre concentrated load is directed along the interface dividing the two materials. Numerical results are obtained for four different combinations of the bimaterial specimen with an interface edge crack.  相似文献   

7.
An oblique edge crack in an anisotropic material under antiplane shear loadings is investigated. The antiplane problems are formulated based on a linear transformation method. An anisotropic solid containing an edge crack subjected to concentrated forces is first considered. The stress intensity factor for the edge crack with concentrated forces is obtained from the solution of the transformed edge crack in an isotropic material which is solved by using conformal mapping technique and complex function theory. The solution of the edge crack under concentrated loads is used to construct the stress intensity factor for the oblique edge crack in the anisotropic material subjected to antiplane distributed loads. Some numerical computations are carried out to calculate the stress intensity factors for the edge crack in inclined orthotropic materials subjected to point forces as well as distributed tractions.  相似文献   

8.
This work is concerned with the cracking characteristics of mixed mode dislocations near a lip-like mode crack, stress intensity and strain energy density factor are obtained by using conformal mapping, singularity analysis and Cauchy integrals. Shielding effect generated by screw dislocation near a lip-like mode crack decreases with the increment of the distance between screw dislocation and crack tip. Larger distance between two faces of the crack leads to the shielding effect waning. The strain energy density factor of mode III decreases with the increment of the distance between dislocation and crack tip. Larger distance between two faces of lip-like mode crack also leads to the strain energy density factor waning and encourages crack initiation; the shielding effects generated by edge dislocation near the crack decrease with the increment of the distance between edge dislocation and crack tip.  相似文献   

9.
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body, with the crack faces subjected to a traction distribution consisting of two pairs of suddenly-applied shear line loads is considered. The analytic expression for the combined mode stress intensity factors as a function of time is obtained. The method of solution is based on the application of integral transforms and the Wiener-Hopf technique. Some features of the solutions are discussed and graphical numerical results are presented. The project supported by the National Natural Science Foundation of China  相似文献   

10.
彭中伏  陈学军 《力学学报》2018,50(2):307-314
边裂(边缘开裂)是涂层热致损伤的主要模式之一. 边缘裂纹穿透涂层后,常导致界面脱粘从而驱使涂层与基体剥离,最终丧失对基体的保护作用. 本文以热应力强度因子表征边缘裂纹的扩展驱动力,研究筒壁涂层在热对流作用下的边裂行为. 首先,利用拉普拉斯变换法,得到了瞬态温度场及热应力场的封闭解. 其次,运用Fett等的三参数法确定了筒壁涂层边缘裂纹的权函数. 最后,基于叠加原理和权函数方法计算了边缘裂纹的热应力强度因子. 探讨了无量纲时间、边缘裂纹深度、基体/涂层厚度比、热对流强度等参数对热应力强度因子的影响规律. 结果表明:热应力强度因子的峰值既非发生在热载荷初始时刻,也非发生在热稳态时刻,而出现在时间历程的中间时刻;增大热对流强度不仅可提高热应力强度因子的峰值,而且使峰值提前出现;其他条件相同时,热应力强度因子随着边缘裂纹长度的增大而降低;增大涂层厚度或减小基体厚度可增强涂层抵抗瞬态热载荷的能力.   相似文献   

11.
讨论横观各向同性体中含一半平面裂纹,在裂纹面上作用有运动点荷载的三维复合型应力强度因子历史,通过积分变换技术,最终将问题归结为求解Wiener-Hopf型积分方程组,该文给出了求解这一类积分方程组的一般性方法,在此基础上,基于Abel定理和Cagniard-deHoop方法,求得Ⅱ、Ⅲ型复合应力强度因子的解析解,最后通过数值结果揭示了横观各向同性材料三维方尖端场的动态特性。  相似文献   

12.
The paper addresses the problem of a Mode III interfacial crack advancing quasi-statically in a heterogeneous composite material, that is a two-phase material containing elastic inclusions, both soft and stiff, and defects, such as microcracks, rigid line inclusions and voids. It is assumed that the bonding between dissimilar elastic materials is weak so that the interface is a preferential path for the crack. The perturbation analysis is made possible by means of the fundamental solutions (symmetric and skew-symmetric weight functions) derived in Piccolroaz et al. (2009). We derive the dipole matrices of the defects in question and use the corresponding dipole fields to evaluate “effective” tractions along the crack faces and interface to describe the interaction between the main interfacial crack and the defects. For a stable propagation of the crack, the perturbation of the stress intensity factor induced by the defects is then balanced by the elongation of the crack along the interface, thus giving an explicit asymptotic formula for the calculation of the crack advance. The method is general and applicable to interfacial cracks with general distributed loading on the crack faces, taking into account possible asymmetry in the boundary conditions.The analytical results are used to analyse the shielding and amplification effects of various types of defects in different configurations. Numerical computations based on the explicit analytical formulae allows for the analysis of crack propagation and arrest.  相似文献   

13.
A solution method is derived to determine the stress intensity factors for both an internal crack and an edge crack in an orthotropic substrate that is reinforced on its boundary by a finite-length orthotropic plate. The method utilizes the Green’s functions for a pair of dislocations and a concentrated force on the boundary while invoking the concept of superposition. Enforcing the traction-free boundary condition along the crack surfaces and the continuity of displacement gradients along the plate/substrate interface results in a coupled system of singular integral equations. An asymptotic analysis of the kernels in these equations for the region of the junction point between the plate corner and the substrate boundary reveals the strength of the singularity in the case of an edge crack. The numerical solution of the integral equations provides results for the stress intensity factors for both an internal crack and an edge crack perpendicular to the substrate boundary and aligned with one of the corners of the plate. The present results have been validated against previously published stress intensity factors for an internal crack and an edge crack in an isotropic substrate.  相似文献   

14.
The antiplane shear deformation problem of two edge-bonded dissimilar isotropic wedges is considered. In the case when the sum of the two apex angles is equal to 2π, the problem reduces to that of two edge-bonded dissimilar materials with an interfacial crack subjected to concentrated antiplane shear tractions on the crack faces. An explicit expression is extracted for the stress intensity factor at the crack tip. In the special cases of different combinations of the apex angles, the obtained expression for the stress intensity factor may be simplified and relations of a simpler form are given for the stress intensity factor. It is shown that the stress intensity factor is dependent on the material properties as well as the geometry and loading. However, in special cases of equal apex angles as well as the case of similar materials the dependency of the stress intensity factor on the material properties disappears.  相似文献   

15.
用裂纹张开位移全场拟合法求应力强度因子-边裂纹问题   总被引:3,自引:2,他引:1  
从一组给定的的裂纹张开位移(COD)资料求应力强度因子(SIF)的好方法应具有以下特征:(1)这个方法应最大限度地利用已知的COD信息;(2)数值计算只包含位移量;(3)后处理简单;(4)所得到的SIF的误差可由COD资料本身的误差来估计。该文将求内裂纹SIF的COD全场拟合法扩充应用到边裂纹问题,该方法具有上述优点。对几种典型的边裂纹用边界元法得到的COD资料,用这种方法得到了可靠性高、一致性好的SIF,其计算精度与所用的COD资料的平均精度具有相同的量级。  相似文献   

16.
In this paper we address the vector problem of a 2D half-plane interfacial crack loaded by a general asymmetric distribution of forces acting on its faces. It is shown that the general integral formula for the evaluation of stress intensity factors, as well as high-order terms, requires both symmetric and skew-symmetric weight function matrices. The symmetric weight function matrix is obtained via the solution of a Wiener–Hopf functional equation, whereas the derivation of the skew-symmetric weight function matrix requires the construction of the corresponding full field singular solution.The weight function matrices are then used in the perturbation analysis of a crack advancing quasi-statically along the interface between two dissimilar media. A general and rigorous asymptotic procedure is developed to compute the perturbations of stress intensity factors as well as high-order terms.  相似文献   

17.
本文在虚裂纹模型中引入初裂强度因子的概念以研究混凝土结构的三维裂缝扩展。虚裂纹的扩展由裂纹尖端的初裂强度因子和虚裂纹所传递的软化应力共同控制。将软化应力分析曲线分段线性化进行模拟,这使问题得到很大程度的简化,同时又保证了解的必要精度。对所建立的有限元基本方程组建议了一次性的求解方法,可以不进行迭代,这既保持了解的稳定,又减轻了计算工作量。  相似文献   

18.
Generalized 2D problem of piezoelectric media containing collinear cracks   总被引:3,自引:0,他引:3  
The generalized 2D problem in piezoelectric media with collinear cracks is addressed based on Stroh's formulation and the exact electric boundary conditions on the crack faces. Exact solutions are obtained, respectively, for two special cases: one is that a piezoelectric solid withN collinear cracks is subjected to uniform loads at infinity, and the other is that a piezoelectric solid containing a single crack is subjected to a line load at an arbitrary point. It is shown when uniform loads are applied at infinity or on the crack faces that, the stress intensity factors are the same as those of isotropic materials, while the intensity factor of electric displacement is dependent on the material constants and the applied mechanical loads, but not on the applied electric loads. Moreover, it is found that the electric field inside any crack is not equal to zero, which is related to the material properties and applied mechanical-electric loads. The project supported by the National Natural Science Foundation of China (19772004)  相似文献   

19.
爆炸载荷下板条边界斜裂纹的动态扩展行为   总被引:1,自引:0,他引:1  
为了研究爆炸应力波作用下板条边界斜裂纹的动态扩展行为,首先分析了爆炸应力波在含边界斜裂纹板条中的传播,其次采用动态焦散线实验方法,进行了爆炸载荷下板条边界斜裂纹扩展规律的实验研究.研究结果表明,爆炸应力波作用下,板条试件边界斜裂纹的扩展过程中,裂纹扩展速度、扩展加速度和裂尖动态应力强度因子随时间波动变化,扩展速度最大值...  相似文献   

20.
In this study, the transient response of a finite crack subjected to an incident horizontally polarized shear wave and then propagated with a constant speed in an unbounded elastic solid is investigated. Initially, the finite crack with crack length l is stress-free and at rest. At time t = 0, an incident horizontally polarized shear wave strikes at one of the crack tips and will arrive at the other tip at a later time. Then, two crack tips propagate along the crack tip line with different velocities as the corresponding stress intensity factors reach their fracture toughness. The correspondent configuration is shown in Fig. 1
  1. Download : Download high-res image (31KB)
  2. Download : Download full-size image
Fig. 1. Configuration and coordinate systems of a finite crack in an unbounded medium.
. In analyzing this problem, diffracted waves generated by two propagating crack tips must be taken into account and it makes the analysis extremely difficult. In order to solve this problem, the transform formula in the Laplace transform domain between moving and stationary coordinates is first established. Complete solutions are determined by superposition of proposed fundamental solutions in the Laplace transform domain. The fundamental solutions to be used are from the problems of applying exponentially distributed traction and screw dislocation on crack faces and along the crack tip line, respectively. The exact transient solutions of dynamic stress intensity factor for the first few diffracted waves that arrive at two crack tips are obtained and expressed in compact formulations. Numerical calculations of dynamic stress intensity factors for both tips are evaluated and the results are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号