首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The structure of dilutetium silicon pentaoxide, Lu2SiO5, has isolated ionic SiO4 tetrahedral units and non‐Si‐bonded O atoms in distorted OLu4 tetrahedra. The OLu4 tetrahedra form edge‐sharing infinite chains and double O2Lu6 tetrahedra along the c axis. The edge‐sharing chains are connected to the O2Lu6 double tetrahedra by isolated SiO4 units. The structure has been determined by neutron diffraction.  相似文献   

2.
Fe3P5SiO19 has been prepared by solid state reaction of Fe(PO3)3, FePO4, and SiO2 at 1000°C. The structure has been determined from a single crystal through direct methods and difference Fourier synthesis and refined to R=0.052. The unit cell is hexagonal, space group P63, with a=14.4804(8) Å, c=7.4256(2) Å, and Z=4. The three-dimensional framework is built up from [Fe2O9] units of two faces sharing octahedra and Si2O7 disilicates linked by PO4 tetrahedra. Fe3P5SiO19 is isotypic with V3P5SiO19. Fe3P5SiO19 is antiferromagnetic below TN=35 K. The magnetic structure has been determined by means of powder neutron diffraction methods: the magnetic moments are antiferromagnetically coupled inside the [Fe2O9] units, in agreement with the Goodenough rules. These units are linked to each other through several Fe-O-P-O-Fe super-superexchange pathways and form antiferromagnetic [001] rows. The moment direction lies in the (001) plane (μFe=4.56(5) μB at 2 K). There is a competition between the intra- and interunits interactions which all are antiferromagnetic and cannot be simultaneously satisfied without frustration. Mössbauer spectra are fitted with two doublets and two sextuplets in the paramagnetic and antiferromagnetic states, respectively. Their rather high isomer shifts are explained by the inductive effect. The magnetic interactions are discussed.  相似文献   

3.
分别采用非离子表面活性剂(C_3H_6OC_2H_4O)_x(P123),阴离子表面活性剂C_(12)H_(25)NaO_4S(SDS)和C_(18)H_(29)NaO_3S(SDBS)作为模板剂,通过溶胶-凝胶再结合程序升温溶剂热一步法制备了一系列固载杂多酸光催化材料-H_6P_2W_(18)O_(62)/SiO_2。通过傅立叶-红外光谱(FTIR)、X-射线衍射(XRD)、电感耦合等离子体原子发射光谱(ICP-AES)、氮气吸附-脱附测定、透射电子显微镜(TEM)以及扫描电子显微镜配合X-射线能量色散谱仪(SEM-EDS)等测试手段对不同模板剂作用下合成产物进行了对比表征分析。结果表明,不同模板剂作用下的系列固载杂多酸-H_6P_2W_(18)O_(62)/SiO_2产物中母体多酸的Dawson基本结构均未发生明显变化,但固载后比表面积显著不同,其中,经模板剂P123和SDS作用合成的H_6P_2W_(18)O_(62)/SiO_2(P123)和H_6P_2W_(18)O_(62)/SiO_2(SDS)的比表面积高达916和634m~2·g~(-1),且显示为有序介孔材料。以二甲酚橙为模型分子,在微波场作用下,该系列固载多酸光催化性能研究结果显示,它们的光催化活性可被微波显著增强,其中,采用P123作用合成产物的光催化活性最高,60 min内对二甲酚橙的降解率达99%以上。  相似文献   

4.
Sm4S3[Si2O7] and NaSm9S2[SiO4]6: Two Sulfide Silicates with Trivalent Samarium The sulfide silicates Sm4S3[Si2O7] and NaSm9S2[SiO4]6 are obtained as light yellow transparent crystals by the reaction of Sm, Sm2O3, S, and SiO2 with fluxing SmCl3 or NaCl, respectively, in suitable molar ratios in fused evacuated silica tubes (850 °C, 7 d). Tetragonal crystals of Sm4S3[Si2O7] (I41/amd; Z = 8; a = 1186.4(1); c = 1387.0(2) pm) with ecliptically conformed [Si2O7]6–‐groups of corner sharing [SiO4]‐tetrahedra are formed. These double tetrahedra as well the sulfide anions (S2–) coordinate two crystallographically independent metal cations. They provide coordination numbers of 8 + 1 (5 S2– and 3 + 1 O2–) for Sm1 and 9 (3 S2– and 6 O2–) for Sm2. NaSm9S2[SiO4]6 crystallizes hexagonally (P63/m; Z = 1; a = 975.32(9); c = 676.46(7) pm) in a modified bromapatite‐type structure. The coordination spheres about the two crystallographically different Sm3+ cations are built up by oxygen atoms of the orthosilicate units ([SiO4]4–) and sulfide anions (S2–). As a result, Sm1 and Sm2 have coordination numbers of 9 and 8, respectively. Na+ and (Sm1)3+ occupy the position 4 f in a molar ratio of 1 : 3 whereas the lower coordinated (Sm2)3+ occupies the 6 h position.  相似文献   

5.
Two Chloride Silicates of Yttrium: Y3Cl[SiO4]2 and Y6Cl10[Si4O12] The chloride‐poor yttrium(III) chloride silicate Y3Cl[SiO4]2 crystallizes orthorhombically (a = 685.84(4), b = 1775.23(14), c = 618.65(4) pm; Z = 4) in space group Pnma. Single crystals are obtained by the reaction of Y2O3, YCl3 and SiO2 in the stoichiometric ratio 4 : 1 : 6 with ten times the molar amount of YCl3 as flux in evacuated silica tubes (7 d, 1000 °C) as colorless, strongly light‐reflecting platelets, insensitive to air and water. The crystal structure contains isolated orthosilicate units [SiO4]4– and comprises cationic layers {(Y2)Cl}2+ which are alternatingly piled parallel (010) with anionic double layers {(Y1)2[SiO4]2}2–. Both crystallographic different Y3+ cations exhibit coordination numbers of eight. Y1 is surrounded by one Cl and 7 O2– anions as a distorted trigonal dodecahedron, whereas the coordination polyhedra around Y2 show the shape of bicapped trigonal prisms consisting of 2 Cl and 6 O2– anions. The chloride‐rich chloride silicate Y6Cl10[Si4O12] crystallizes monoclinically (a = 1061,46(8), b = 1030,91(6), c = 1156,15(9) pm, β = 103,279(8)°; Z = 2) in space group C2/m. By the reaction of Y2O3, YCl3 and SiO2 in 2 : 5 : 6‐molar ratio with the double amount of YCl3 as flux in evacuated silica tubes (7 d, 850 °C), colorless, air‐ and water‐resistant, brittle single crystals emerge as pseudo‐octagonal columns. Here also a layered structure parallel (001) with distinguished cationic double‐layers {(Y2)5Cl9}6+ and anionic layers {(Y1)Cl[Si4O12]}6– is present. The latter ones contain discrete cyclo‐tetrasilicate units [Si4O12]8– of four cyclically corner‐linked [SiO4] tetrahedra in all‐ecliptical arrangement. The coordination sphere around (Y1)3+ (CN = 8) has the shape of a slightly distorted hexagonal bipyramid comprising 2 Cl and 6 O2– anions. The 5 Cl and 2 O2– anions building the coordination polyhedra around (Y2)3+ (CN = 7) form a strongly distorted pentagonal bipyramid.  相似文献   

6.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   

7.
Two new pyrophosphates nonlinear optical (NLO) materials, Rb3PbBi(P2O7)2 ( I ) and Cs3PbBi(P2O7)2 ( II ), were successfully designed and synthesized. Both compounds exhibit large NLO effects and birefringences. Material I presents the scarce case of possessing the coexistence of large birefringence (0.031 at 1064 nm and 0.037 at 532 nm) and second harmonic generation (SHG) response (2.8× potassium dihydrogen phosphate (KDP)) in ultraviolet NLO phosphates and its SHG is the largest in the phase-matching (PM) pyrophosphates. Both I and II have three-dimensional (3D) crystal structures composed of corner-shared RbO12 (CsO11), RbO10 (CsO10), BiO6, PbO7 (PbO6) and P2O7 groups, in which P2O7 and PbO7 (PbO6) units form an alveolate [PbPO] skeleton frame. Theoretical calculations reveal that the P−O, Bi−O and Pb−O units are mainly responsible for the moderate birefringence and large SHG efficiency of I .  相似文献   

8.
Two new pyrophosphates nonlinear optical (NLO) materials, Rb3PbBi(P2O7)2 ( I ) and Cs3PbBi(P2O7)2 ( II ), were successfully designed and synthesized. Both compounds exhibit large NLO effects and birefringences. Material I presents the scarce case of possessing the coexistence of large birefringence (0.031 at 1064 nm and 0.037 at 532 nm) and second harmonic generation (SHG) response (2.8× potassium dihydrogen phosphate (KDP)) in ultraviolet NLO phosphates and its SHG is the largest in the phase‐matching (PM) pyrophosphates. Both I and II have three‐dimensional (3D) crystal structures composed of corner‐shared RbO12 (CsO11), RbO10 (CsO10), BiO6, PbO7 (PbO6) and P2O7 groups, in which P2O7 and PbO7 (PbO6) units form an alveolate [PbPO] skeleton frame. Theoretical calculations reveal that the P?O, Bi?O and Pb?O units are mainly responsible for the moderate birefringence and large SHG efficiency of I .  相似文献   

9.
The thermal evolution of gels, glasses and ceramics of various more or less refractory compositions (Al2O3, 3Al2O32SiO2, 7Al2O33SiO2, Al2O32SiO2, Al2O32SiO20.7B2O3, Al2O32SiO22B2O3, Al2O32SiO26B2 O3) have been studied by dilatometry, DTA, and helium density measurements. Comparison is made for materials prepared by rapid (powder) or by very slow gelation (optically clear monoliths). The influence of atmosphere sintering (air, H2, vacuum) is reported. Densification and kinetic laws are discussed.Also at LASIR, CNRS, 2 rue Henry Dunant, 94320 Thiais, France.  相似文献   

10.
In this study, Lnx(SiO4)6O(1.5x–12) (Ln: Nd, La) materials as electrolytes for solid oxide fuel cells (SOFC) were prepared by the sol-gel process. It has been reported that the apatite structure of Lnx(SiO4)6O(1.5x–12) shows higher ionic conductivity than yttrium-stabilized zirconium oxide at the working temperature of the SOFC. Ln10(SiO4)6O3 is a major component of the Lnx(SiO4)6O(1.5x–12) system. Ln10(SiO4)6O3 consists of Ln9.33(SiO4)6O2 and a small amount of Ln2SiO5. It has been proposed that the ionic conductivity of Lnx(SiO4)6O(1.5x–12) decreases with increasing Ln2SiO5 with non-apatite structure. The object of the present study was to bring about this decrease by generating Ln2SiO5 in the system.Precursor solutions for synthesis of the powder were prepared using tetraethoxysilane (Si(OC2H5)4) and neodymium acetate monohydrate (Nd(CH3COO)3·H2O) or lanthanum acetate monohydrate (La (CH3COO)3·H2O) as raw materials and acetic acid (CH3COOH), 2-methoxyethanol (C2H5OCH2CH2OH), and triethanolamine (N(CH2CH2OH)3) as solvents. To obtain the powder, the solution was dried and heat-treated at 600 °C for 2 h. Disks made from the powder were heat-treated at temperatures between 1100 and 1500 °C for 10 h. The results of an XRD investigation indicate that almost all diffraction peaks of these samples could be assigned to Ln9.33(SiO4)6O2. The sample with x = 10.00 included a small amount of Ln2SiO5. The ionic conductivity of this latter sample was higher than that of other samples with similar values of x (x = 9.33 and 10.67).  相似文献   

11.
The infrared and laser-Raman spectra of crystalline Sr2As2O7 and Ba2As2O7 are reported and discussed. The principal force constants for the As2O74? ion are calculated using a simplified molecular model.  相似文献   

12.
Anhydrous silicophosphoric acid glass with an approximate composition of H5Si2P9O29 was synthesized and its thermal and proton-conducting properties were characterized. Despite exhibiting a glass transition at 192 °C, the supercooled liquid could be handled as a solid up to 280 °C owing to its high viscosity. The glass and its melt exhibited proton conduction with a proton transport number of ∼1. Although covalent O−H bonds were weakened by relatively strong hydrogen bonding, the proton conductivity (4×10−4 S cm−1 at 276 °C) was considerably lower than that of phosphoric acid. The high viscosity of the melt was due to the tight cross-linking of phosphate ion chains by six-fold-coordinated Si atoms. The low proton conductivity was attributed to the trapping of positively charged proton carriers around anionic SiO6 units (expressed as (SiO6/2)2−) to compensate for the negative charges.  相似文献   

13.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

14.
Two New Silicate-Chlorides with Divalent Europium: LiEu3[SiO4]Cl3 and Li7Eu8[SiO4]4Cl7 LiEu3[SiO4]Cl3 was prepared by reaction of LiCl with Eu2SiO4 and Li7Eu8[SiO4]4Cl7 from Li with Eu2O3, SiO2 and LiCl. The crystal structures of LiEu3[SiO4]Cl3 (Pmna, a = 946.95(13); b = 699.52(8); c = 1 368.0(2) pm; Z = 4; R1 = 0.0325, R2w = 0.0642) and Li7Eu8[SiO4]4Cl7 (P21/c; a = 851.85(5); b = 948.62(7); c = 1 679.0(2) pm; β = 96.221(8)°; Z = 2; R1 = 0.0352, R2w = 0.0744) were determined from four-circle diffractometer data. LiEu3[SiO4]Cl3 contains [Li(SiO4)2] units and LiCl6 octahedra while in Li7Eu8[SiO4]4Cl7 larger ?lithosilicate”? groups are found. In both structures, the Eu2+ ions are coordinated mostly eightfold by O2? and Cl? ligands.  相似文献   

15.
The disassembly and reassembly of giant molecules are essential processes in controlling the structure and function of biological and artificial systems. In this work, the disassembly and reassembly of a giant ring‐shaped polyoxometalate (POM) without isomerization of the monomeric units is reported. The reaction of a hexavacant lacunary POM that is soluble in organic solvents, [P2W12O48]14?, with manganese cations gave the giant ring‐shaped POM [{γ‐P2W12O48Mn4(C5H7O2)2(CH3CO2)}6]42?. This POM is a hexamer of manganese‐substituted {P2W12O48Mn4} units, and its inner cavity was larger than any of those previously reported for ring‐shaped polyoxotungstates. It was disassembled into monomeric units in acetonitrile, and the removal of the capping organic ligands on the manganese cations led to reassembly into a tetrameric ring‐shaped POM, [{γ‐P2W12O48Mn4(H2O)6}4(H2O)4]24?.  相似文献   

16.
17.
Glasses and devitrificates from the SiO2–B2O3–P2O5–K2O–CaO–MgO system with constant contents of SiO2 and P2O5 network formers, modified by the addition of B2O3, were analyzed. All materials were synthesized by the traditional melt-quenching technique. The glass stability (GS) parameters (Krg, ∆T, KW, KH) were determined. The effect of the addition of B2O3 on the GS, liquation phenomenon, crystallization process, and the type of crystallizing phases were examined using SEM-EDS, DSC, XRD, and Raman spectroscopy imaging methods. It was observed that the addition of B2O3 increased the tendency of the glass to crystallize. Both phosphates (e.g., Ca9MgK(PO4)7, Mg3Ca3(PO4)4), and silicates (e.g., K2Mg5(Si12O30), CaMg(Si2O6), MgSiO3) crystallized in the studied system. The Raman spectrum for the orthophosphate Mg3Ca3(PO4)4 stanfieldite type was obtained. Boron ions were introduced into the structures of crystalline compounds at high crystallization temperatures. The type of crystallizing phases was found to be related to the phenomenon of liquation, and the order of their occurrence was dependent on the Gibbs free enthalpy.  相似文献   

18.
Zusammenfassung AlPO4-10 Mol% SiO2-Mischkristalle mit stapelfehlgeordneter Cristobalit-Tridymit-Struktur zeigen gegenüber reinem AlPO4 mit Cristobalit-Struktur eine auffällige Hemmung der thermischen Zersetzung. Dies wird auf die Bildung thermisch stabiler diffusionshemmender SiO2–P2O5-Schmelzhäute zurückgeführt. Zusätze von GeO2, SnO2 oder TiO2 zu AlPO4 bewirken diesen Hemmungseffekt nicht. Schmelzen von GeP2O7, SnP2O7 und TiP2O7 zerfallen bei 1400°C schnell. Mechanische Gemenge von AlPO4 und SiO2 zeigen den Hemmungseffekt nur schwach. AlAsO4 zerfällt mit und ohne SiO2-Zusatz rasch oberhalb 1000°C.
Thermal decomposition of AlPO4–SiO2 mixed crystals
AlPO4-10 mole% SiO2 solid solutions, representing the stacking-disordered cristobalite-tridymite structure, in contrast to pure AlPO4 show a remarkable reduction of rate of thermal decomposition. This is brought into connection with the formation of molten surface layers of SiO2–P2O5. Simple mixtures of AlPO4 with SiO2 in the form of quartz powder or amorphous silica gel show this effect only scarcely. Additions of GeO2, SnO2 or TiO2 do not show this effect at all. In contrast to melts of the composition SiP2O7, melts of GeP2O7, SnP2O7 and TiP2O7 decompose quickly at 1400°C. AlAsO4 even with the addition of SiO2 decomposes very rapidly above 1000°C.


Mit 5 Abbildungen

Herrn Prof. Dr.H. Nowotny gewidmet.  相似文献   

19.
Review of mean amplitudes of vibration for inorganic six-atomic molecules from spectroscopic calculations and electrondiffraction-data. The work contains new results of spectroscopic mean amplitudes and force constants for a number of molecules, viz.: S6, N2O4, B2F4, N2H4, N2F4, P2I4 and SOF4.  相似文献   

20.
SiO2 and Al2O3 supported Ni catalysts were synthesized in the form of xerogels: the SiO2 based materials were prepared starting from Ni propionate or glycolate salts and reacting them with tetraethoxysilane (TEOS) in propionic acid, Si(ethylene glycolate) or sodium silicate. The Al2O3 supported catalysts were prepared similarly from Ni propionate salts with Al iso-propoxide salts. Narrow metal particles and strong metal support interactions are observed in the sol-gel catalysts. The metal dispersion was higher for Al2O3 based materials than the SiO2 ones and it deeply depends on the Ni precursor for the silica supported Ni. Wet impregnated oxides with similar Ni loading have higher metal surface area than those from sol-gel processing. The influence of surface differences on the catalytic activity of the materials was studied following the CH4 and CO2 reaction in dry reforming conditions by pulse reaction tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号