首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is shown that in the processes of oxidation, reduction, and annealing of samples of the title, three-dimensional microdomains (3D-μD) play a predominant role. These microdomains are intergrown in the three dimensions and allow compositional variations in a very subtile manner. The existence of microdomains seems to be associated with the presence of tetravalent cations and with the fact that all the structures observed are superstructures of the perovskite cell.  相似文献   

2.
The conductivity and ion and proton transfer numbers were measured in La1 ? x Sr x Sc1 ? y Mg y O3 ? α system (x = y = 0.10–0.20). The partial conductivities (total ion, proton, oxygen, hole) and their effective activation energies were calculated. The measurements were carried out in air with respect to humidity (pH2O = 0.04?2.65 kPa) within the temperature range from 630 to 920°C.  相似文献   

3.
Solid solution phases Li2+x(LixMg1−xSn3)O8: 0 ≤ x ≤ 0.5 and Li2Mg1−xFe2xSn3−xO8: 0 ≤ x ≤ 1, both with ramsdellite type structure, have been synthesized by solid state reaction at 1773 and 1523 K, respectively. The relationship of the ramsdellite structure to the recently illustrated, tetragonal-packed structure is given. The Li2+x(LixMg1−xSn3)O8 solid solutions exhibit conductivities 4 × 10−6–5 × 10−4 (Ω cm)−1 at 573 K and corresponding activation energies, 0.93−0.74 eV. The highest conductivity was observed for Li2.3(Li0.3Mg0.7Sn3)O8, x = 0.3. In the solid solution series Li2Mg1−xFe2xSn3−xO8, the highest conductivity was exhibited by Li2Fe2Sn2O8, 2 × 10−5 (Ω cm)−1 at 573 K.  相似文献   

4.
Subsolidus phase ratios in the Na2MoO4-NiMoO4-Sc2(MoO4)3 system have been studied using X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. A phase of variable composition Na1 ? x Ni1 ? x Sc1 + x (MoO4)3 (0 ≤ x ≤ 0.5) having NASICON structure (space group \(R\bar 3c\) ) and a triple molybdate crystallizing in triclinic system (space group \(P\bar 1\) ) have been obtained. The high conductivity of Na1 ? x Ni1 ? x Sc1 + x (MoO4)3 allows the phase of variable composition to be regarded as a promising sodiumion-conductive solid electrolyte.  相似文献   

5.
Subsolidus phase ratios of the Na2MoO4-CoMoO4-Sc2(MoO4)3 system have been studied by X-ray diffraction, differential thermal analysis, and vibrational spectroscopy. A phase of variable composition Na1 ? x Co1 ? x Sc1 + x (MoO4)3, 0 ≤ x ≤ 0.5 having NASICON structure (space group \(R\bar 3c\) ) and triple molybdate NaCo3Sc(MoO4)5 crystallizing in triclinic system (space group \(P\bar 1\) ) have been obtained. The high conductivity of Na1 ? x Co1 ? x Sc1 + x (MoO4)3 allows the phase of variable composition to be regarded as a promising sodium-ion conducting solid electrolyte.  相似文献   

6.
LaNixFe1–xO3 perovskites (0≤x≤1) are efficient catalysts in steam reforming of methane (optimum ratio H2O/CH4=1) for syngas production. For low x values (x≤0.4), the three-metal structure is partly maintained with a strong interaction between free nickel and the perovskite, the carbon formation is limited and the regeneration of the three-metal perovskite by recalcination is possible. For higher x values (x>0.4), only a bimetallic LaFeO3 is maintained during the reaction and the catalysts perform as free nickel on LaFeO3 and La2O3. Coke formation becomes important and the regeneration gives two distinct perovskites, LaFeO3 and LaNiO3. The increase in H2O/CH4 from 1 to 3 enhances the oxidating power, leads to a decrease in the activity and favours CO2 formation.  相似文献   

7.
Young’s modulus, strain–stress behavior, fracture strength, and fracture toughness of (0≤×≤1) materials have been investigated in the temperature range 20–1,000°C. Young’s moduli of and , measured by resonant ultrasound spectroscopy, were 130±1 and 133±3 GPa, respectively. The nonlinear stress–strain relationship observed by four-point bending at room temperature was inferred as a signature of ferroelastic behavior of the materials. Above the ferroelastic to paraelastic transition temperature, the materials showed elastic behavior, but due to high-temperature creep, a nonelastic respond reappeared above ∼800°C. The room temperature fracture strength measured by four-point bending was in the range 107–128 MPa. The corresponding fracture toughness of , measured by single edge V-notch beam method, was 1.16±0.12 MPa·m1/2. The measured fracture strength and fracture toughness were observed to increase with increasing temperature. The fracture mode changed from intragranular at low temperature to intergranular at high temperature. Tensile stress gradient at the surface of the materials caused by a frozen-in gradient in the oxygen content during cooling was proposed to explain the low ambient temperature fracture strength and toughness.  相似文献   

8.
Lu J  Dai Y  Guo M  Wei W  Ma Y  Han S  Huang B 《Chemphyschem》2012,13(1):147-154
As an excellent bandgap-engineering material, the Cd(1-x)Zn(x)S solid solution, is found to be an efficient visible light response photocatalyst for water splitting, but few theoretical studies have been performed on it. A better characterization of the composition dependence of the physical and optical properties of this material and a thorough understanding of the bandgap-variation mechanism are necessary to optimize the design of high-efficience photocatalysts. In order to get an insight into these problems, we systematically investigated the crystal structure, the phase stability, and the electronic structures of the Cd(1-x)Zn(x)S solid solution by means of density functional theory calculations. The most energetically favorable arrangement of the Cd, Zn, S atoms and the structural disorder of the solid solution are revealed. The phase diagram of the Cd(1-x)Zn(x)S solid solution is calculated based on regular-solution model and compared with the experimental data. This is the first report on the calculated phase diagram of this solid solution, and can give guidance for the experimental synthesis of this material. Furthermore, the variation of the electronic structures versus x and its mechanism are elaborated in detail, and the experimental bandgap as a function of x is well predicted. Our findings provide important insights into the experimentally observed structural and electronic properties, and can give theoretical guidelines for the further design of the Cd(1-x)Zn(x)S solid solution.  相似文献   

9.
10.
Quasi-one-dimensional (1D) solid solutions Ti1 ? x Fe x (OCH2CH2O)2 ? x/2 (0 < x ≤ 0.1) with the structure of anatase were prepared by heating the glycolate Ti1 ? x Fe x (OCH2CH2O)2 ? x/2 in an atmosphere of air at a temperature of >450°C. The conditions of formation and the properties of the new glycolate Ti3Fe2(OCH2CH2O)9 were described. It was found that the synthesized Ti1 ? x Fe x O2 ? 2x/2 solid solutions exhibit photocatalytic activity in the reaction of hydroquinone oxidation in an aqueous solution on irradiation with UV light. A correlation between the rate of oxidation of hydroquinone and the concentration of iron in the catalyst was established. A procedure for the preparation of titanium dioxide with the structure of anatase doped with iron and carbon (Ti1 ? x Fe x O(2 ? x/2) ? yCy) and also composites on its basis, which contain an excess amount of carbon, was proposed.  相似文献   

11.
The linear muffintin orbitals method in a tight binding approximation and extended Huckel theory are used to study the electronic structure and chemical bonding of lithium titanate (Li2TiO3) and its protonated analogs (Li1.75H0.25TiO3 and H2TiO3). The effect of protons on electron spectrum characteristics and bond strength are investigated for the monoclinic and cubic phases of lithium titanate. Phase stability is evaluated by cohesion energy calculations.  相似文献   

12.
The crystal structure of the layered cobalt oxyfluoride Sr(2)CoO(3)F synthesized under high-pressure and high-temperature conditions has been determined from neutron powder diffraction and synchrotron powder diffraction data collected at temperatures ranging from 320 to 3 K. This material adopts the tetragonal space group I4/mmm over the measured temperature range and the crystal structure is analogous to n = 1 Ruddlesden-Popper type layered perovskite. In contrast to related oxyhalide compounds, the present material exhibits the unique coordination environment around the Co metal center: coexistence of square pyramidal coordination around Co and anion disorder between O and F at the apical sites. Magnetic susceptibility and electrical resistivity measurements reveal that Sr(2)CoO(3)F is an antiferromagnetic insulator with the Néel temperature T(N) = 323(2) K. The magnetic structure that has been determined by neutron diffraction adopts a G-type antiferromagnetic order with the propagation vector k = (1/2 1/2 0) with an ordered cobalt moment μ = 3.18(5) μ(B) at 3 K, consistent with the high spin electron configuration for the Co(3+) ions. The antiferromagnetic and electrically insulating states remain robust even against 15%-O substation for F at the apical sites. However, applying pressure exhibits the onset of the metallic state, probably coming from change in the electronic state of square-pyramidal coordinated cobalt.  相似文献   

13.
14.
Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.  相似文献   

15.
16.
Perovskite-structure oxides La1?x Sr x FeO3?y (x = 0, 0.2, 0.6, 1) were synthesized by the mechanochemical method. In order to refine the stoichiometric composition and the charge state of ions, these samples were studied by X-ray photoelectron spectroscopy (XPS). An investigation of perovskites with x = 0, 0.2, and 0.6 in air at room temperature showed that these samples do not contain oxygen vacancies (y = 0), i.e., they are fully oxidized. Hence, to produce electrical neutrality, these samples should contain iron(4+) cations in an amount proportional to the degree of substitution (x) of strontium(2+) for lanthanum(3+). However, no Fe4+ cations were found in the oxides. All perovskites contain only Fe3+ cations, oxygen ions O2? along with oxygen ions with reduced electron density (O?). These data provid evidence of the possible electron density redistribution from oxygen ions to iron cations. The fact that the oxides contain oxygen ions with reduced electron density suggests that weakly bound lattice oxygen in substituted perovskites is represented by O? ions.  相似文献   

17.
The preparation and densification (95 %) of ceramics of the new solid solution LaGa1−xNixO3−δ have been carried out for x ≤ 0.50. The chemical analysis of the materials shows that both the oxygen nonstoichiometry amount (δ) and the electron carrier concentration increase with the substitution of nickel for gallium. Whereas LaGaO3 is an insulator, the Ni-doped phases are semi-conducting and behave as a metal for the highest nickel contents. The dilatometric features versus temperature show these materials to be mechanically compatible with the electrolyte La0.90Sr0.10Ga0.80Mg0.20O2.85. In addition their chemical composition does not change at high temperature. All these characteristics make these materials good candidates as cathodes for solid oxide fuel cells.  相似文献   

18.
Results are presented of studying electrochemical properties of perovskite-like solid solutions (La0.5 + x Sr0.5 ? x )1 ? y Mn0.5Ti0.5O3 ? δ (x = 0–0.25, y = 0–0.03) synthesized using the citrate technique and studied as oxide anodic materials for solid oxide fuel cells (SOFC). X-ray diffraction (XRD) analysis is used to establish that the materials are stable in a wide range of oxygen chemical potential, stable in the presence of 5 ppm H2S in the range of intermediate temperatures, and also chemically compatible with the solid electrolyte of La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 ? δ (LSGMC). It is shown that transition to a reducing atmosphere results in a decrease in electron conductivity that produced a significant effect on the electrochemical activity of porous electrodes. Model cells of planar SOFC on a supporting solid-electrolyte membrane (LSGMC) with anodes based on (La0.6Sr0.4)0.97Mn0.5Ti0.5O3 ? δ and (La0.75Sr0.25)0.97Mn0.5Ti0.5O3 ? δ and a cathode of Sm0.5Sr0.5CoO3 ? δ are manufactured and tested using the voltammetry technique.  相似文献   

19.
It is shown by X-ray diffraction, thermal analysis and microscopy studies that the quasi-binary system Ag1−xPdxMg crystallizes with a CsCltype structure and forms single-phase alloys throughout the temperature range investigated. The lattice constants follow Vegard's law. They are described by a = a0bx where a0 = 331.526 pm and b = 15.756 pm.  相似文献   

20.
《Solid State Sciences》2004,6(10):1139-1148
The electronic structures of NiO, Ni0.875O, NiO0.875, Ni0.875Li0.125O, Ni0.875Li0.125O0.875 and Ni0.75Li0.25O0.875 with a NaCl-type crystal structure have been calculated using the ab initio linear muffin-tin orbitals method in the LSDA+U approximation. The effect of vacancies in the metal and metalloid sublattices and lithium ions on parameters of the NiO electronic spectrum (the energy gap and the valence band widths, etc.) has been analyzed. It is shown that the defects like the dipole LiVO and the tripole LiVOLi impaired stability and could reduce electrical conductivity of the nickel–oxide-based phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号