首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The storage of extremely cold (4 K) antiprotons in a Penning trap is an important step toward the creation and study of cold antihydrogen. The other required ingredient, the largest possible number of comparably cold positrons, is still lacking. These would be recombined in a high vacuum with the trapped antiprotons, already stored at a pressure below 5×10−17 Torr, thereby avoiding annihilation of the antihydrogen atoms before they can be used in high accuracy measurements or in controlled collision experiments. In an exploratory experiment, positrons from a 18 mCi22Na source follow fringing field lines of a 6 T superconducting solenoid through tiny apertures in the electrodes of a Penning trap to strike a tungsten (reflection) moderator. The positron beam is chopped mechanically and a lock-in directly detects a positron current of 2.5×106e+/s on the moderator. The use of a moderator, unlike an earlier experiment in which < 100 positrons were confined in vacuum, should greatly increase the number of positrons trapped in high vacuum.  相似文献   

2.
Positrons from a 12 mCi22Na source are slowed by a W(110) reflection moderator and then captured in a Penning trap, by damping their motion with a tuned circuit. Because of the stability of the Penning trap and the cryogenic ultra-high vacuum environment, we anticipate that positrons can be accumulated and stored indefinitely. A continuous loading rate of 0.14 e+/s is observed for 32 h in this initial demonstration. More than 1.6×104 positrons have thus been trapped and stored at 4 K, with improvements expected. The extremely high vacuum is required for compatibility with an existing antiproton trap, which has already held more than 105 antiprotons at 4 K, for producing antihydrogen at low temperatures. The extremely cold positrons in high vacuum may also prove to be useful for cooling highly stripped ions.  相似文献   

3.
The field of cold antimatter physics has rapidly developed in the last 20 years, overlapping with the period of the Antiproton Decelerator (AD) at CERN. The central subjects are CPT symmetry tests and Weak Equivalence Principle (WEP) tests. Various groundbreaking techniques have been developed and are still in progress such as to cool antiprotons and positrons down to extremely low temperature, to manipulate antihydrogen atoms, to construct extremely high-precision Penning traps, etc. The precisions of the antiproton and proton magnetic moments have improved by six orders of magnitude, and also laser spectroscopy of antihydrogen has been realized and reached a relative precision of 2 × 10−12 during the AD time. Antiprotonic helium laser spectroscopy, which started during the Low Energy Antiproton Ring (LEAR) time, has reached a relative precision of 8 × 10−10. Three collaborations joined the WEP tests inventing various unique approaches. An additional new post-decelerator, Extra Low ENergy Antiproton ring (ELENA), has been constructed and will be ready in 2021, which will provide 10–100 times more cold antiprotons to each experiment. A new era of the cold antimatter physics will emerge soon including the transport of antiprotons to other facilities.  相似文献   

4.
《Physics letters. A》2006,360(1):141-148
This work reports for the first time experimental data obtained with electrons stored in a Penning–Malmberg trap surrounded by a sextupole radial magnetic field. This trap geometry is one of the candidates for trapping antihydrogen atoms in the place where they are produced starting from cold antiprotons and positrons or positronium. The measurements show that electron plasmas with parameters matching the range used for positrons and electrons in the antihydrogen experiments (number of particles ranging from few 106 up to several 107 and densities of the order of 108–109 cm−3, radius of the order of 1–2 mm) can be transported with 100% efficiency in a trap region that simultaneously confines completely the charged particles and the neutral antihydrogen in the radial plane. Inside this trap plasma storage times of the order of several tens of seconds up to some hundreds of seconds are measured. The plasma storage times are consistent with those needed for antihydrogen production; however the increase of the plasma temperature due to the expansion is not negligible; the consequences of this effect on the antihydrogen trapping are outlined.  相似文献   

5.
Antihydrogen (Hbar) was first produced at CERN in 1995. Over the past decade our ATRAP collaboration has made massive progress toward our goal of producing large numbers of cold Hbar atoms that will be captured in a magnetic gradient trap for precise comparison between the atomic spectra of matter and antimatter. The AD at CERN provides bunches of 3 × 107 low energy antiprotons approximately every 90 s. We capture and cool to 4 K, 0.1% of these in a cryogenic Penning trap. By stacking many bunches we are able to do experiments with 3 × 105 Antiprotons. Approximately 100 positrons (e+)/s from a 22 Na radioactive source are captured and cooled in the trap, with 5 × 106 available experiments. We have developed two ways to make Hbar from these cold ingredients, namely three-body collisions, and two-stage Rydberg charge exchange. We have also developed techniques to measure the excited-state distribution of the Hbar and measure their velocity. A new apparatus is being used this year that includes a e+ accumulator built at York University providing many more e+. The new antiproton annihilation detector provides spatial information of annihilations. Windows allow lasers to enter the trap for spectroscopic measurements and for laser cooling of the Hbar. Possibly the most exciting inclusion in this new apparatus is the inclusion of a neutral particle trap which may, for the first time, capture the Hbar and lead to the first atomic spectrum from antimatter.  相似文献   

6.
The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.  相似文献   

7.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

8.
Since antiprotons have been captured in an ion trap, we consider the possibility of producing antihydrogen by merging cold trapped plasmas of antiprotons and positrons. The calculated, instantaneous rate for antihydrogen production by the 3-body recombination is much higher than for other proposed techniques, opening up intriguing experimental possibilities.  相似文献   

9.
The measurement of the inertial mass of the antiproton and proposed antihydrogen formation experiments require antiprotons stored in ion traps, cooled to very low (4K) temperatures. Techniques to cool the trapped antiprotons from energies around 1 keV are discussed. Coupling to an external circuit produces cooling times of order 103 s, which may be reduced somewhat with negative feedback. Adiabatic reduction of the trapping potential produces significant cooling when the particle energies are substantially less than the well depth. Most promising is cooling via energy-transferring collisions to a cooled cloud of electrons simultaneously trapped with the antiprotons. Electron cooling times are of order 1 s, and strongly depend on electron number and density.  相似文献   

10.
Since it has been demonstrated that antiprotons can be captured in sizeable amounts in ion traps, the intriguing question has been raised whether or not these antiprotons can be used for producingantihydrogen atoms. One route proposed is the merging of trapped antiprotons with a cold trapped plasma of positrons. In this case the formation of antihydrogen proceeds most likely through three-body recombination (pe+e+→ e+) into high Rydberg states of , followed by a rapid cascade of transitions to low-lying states. To assess the influence of the trapping magnetic field (on the order of a few tesla) upon the formation process of we review the present knowledge of the behaviour and properties of hydrogen (and antihydrogen) atoms in strong magnetic fields — a subject which has been very topical in recent years because of its relation to the problem of “quantum” chaos.  相似文献   

11.
During the last several years, our TRAP collaboration has pioneered techniques for slowing, trapping, cooling and indefinitely storing antiprotons to energies more than 1010 times lower than previously possible. The radio signal from a single trapped antiproton is now being used for precision measurements. Many cold antiprotons are stacked as another important step toward the eventual production of antihydrogen, and positrons have been trapped in vacuum.  相似文献   

12.
Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.  相似文献   

13.
We demonstrate cooling of 104 antiprotons in a dense, cold plasma of 108 positrons, confined in a nested cylindrical Penning trap at about 15 K. The time evolution of the cooling process has been studied in detail, and several distinct types of behavior identified. We propose explanations for these observations and discuss the consequences for antihydrogen production. We contrast these results with observations of interactions between antiprotons and “hot” positrons at about 3000 K, where antihydrogen production is strongly suppressed.  相似文献   

14.
In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale ( $\sim\!50\,\upmu\mathrm{eV}$ ), and the energy scales associated with plasma confinement and space charge (~1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.  相似文献   

15.
Cold antihydrogen is produced when antiprotons are repeatedly driven into collisions with cold positrons within a nested Penning trap. Efficient antihydrogen production takes place during many cycles of positron cooling of antiprotons. A first measurement of a distribution of antihydrogen states is made using a preionizing electric field between separated production and detection regions. Surviving antihydrogen is stripped in an ionization well that captures and stores the freed antiproton for background-free detection.  相似文献   

16.
Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.  相似文献   

17.
We examine, theoretically, the feasibility of producing a sample of cold (⩽4 K), high-density (≈1010/cm3) positrons in a Penning trap. We assume9Be+ ions are first loaded into the trap and laser-cooled to approximately 10 mK where they form a uniform density column centered on the trap axis. Positrons from a moderator are then injected into the trap along the direction of the magnetic field through an aperture in one endcap of the trap so that they intersect the9Be+ column. Positron/9Be+ Coulomb collisions extract axial energy from the positrons and prevent them from escaping back out the entrance aperture. Cooling provided by cyclotron radiation and sympathetic cooling with the laser-cooled9Be+ ions causes the positrons to eventually coalesce into a cold column along the trap axis. We present estimates of the efficiency for capture of the positrons and estimates of densities and temperatures of the resulting positron column. Positrons trapped in this way may be interesting as a source for antihydrogen production, as an example of a quantum plasma, and as a possible means to produce a bright beam of positrons by leaking them out along the axis of the trap. Contribution of the National Institute of Standards and Technology; not subject to US copyright.  相似文献   

18.
Centrifugal separation of antiprotons and electrons is observed, the first such demonstration with particles that cannot be laser cooled or optically imaged. The spatial separation takes place during the electron cooling of trapped antiprotons, the only method available to produce cryogenic antiprotons for precision tests of fundamental symmetries and for cold antihydrogen studies. The centrifugal separation suggests a new approach for isolating low energy antiprotons and for producing a controlled mixture of antiprotons and electrons.  相似文献   

19.
An antiproton cloud cooled at 4.2 K in a Penning trap can be further cooled by adiabatic reduction of the trap magnetic and electric fields. It will be shown that the temperature can be reduced by two orders of magnitude. This cooling method may be useful to obtain ultra-low energy antiprotons for the measurement of their gravitational properties and the production of ultra-low energy antihydrogen atoms.  相似文献   

20.
The performance of proposed antihydrogen spectroscopy or gravity experiments will crucially depend on the temperature of the initial antihydrogen sample. Measurements by ATRAP and ATHENA have shown that antihydrogen produced with the nested-trap technique is much hotter than the temperature of the surrounding trap. Therefore, novel schemes for antihydrogen recombination as well as for the pre-cooling of antiprotons are being considered. We are investigating a possible antiproton cooling technique based on the laser cooling of negative osmium ions. If demonstrated to be successful, it will allow the sympathetic cooling of antiprotons—or any negatively charged particles—to microkelvin temperatures. As a first milestone toward the laser cooling of negative ions, we have performed collinear laser spectroscopy on negative osmium and determined the transition frequency and the cross-section of the relevant bound–bound electric-dipole transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号