首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Chalcogen Derivatives of the Halfsandwich Tungsten(V) Complexes Cp*WCl4 and Cp*WCl4(PMe3). X‐Ray Crystal Structure Analyses of anti ‐[Cp*W(Se)(μ‐Se)]2 and Cp*W(S)2(OMe) The chalcogenation of Cp*WCl4 ( 1 ) by E(SiMe3)2 (E = S, Se) and Te(SiMe2tBu)2 in chloroform solution leads to dimeric products of the type anti‐[Cp*W(E)(μ‐E)]2 (E = S ( 3 a ), Se ( 3 b ) and Te ( 3 c )). An X‐ray structure determination of 3 b indicates a centrosymmetric molecule containing a planar W(μ‐Se)2W ring, the W–W distance (297.9(1) pm) corresponds to a single bond. In the presence of air the two terminal chalcogenido ligands (E) in 3 a – c are stepwise replaced by oxido ligands (O) to give [Cp*W(O)(μ‐E)]2 (E = S ( 5 a ), Se ( 5 b ) and Te ( 5 c )) in quantitative yields. The reaction of Cp*WCl4 with H2S or ammonium polysulfide, (NH4)2Sx (x ∼ 10), leads to Cp*W(S)2Cl ( 6 a ); the corresponding methoxy derivative, Cp*W(S)2OCH3 ( 9 a ), has been characterized by an X‐ray structure analysis. On the other hand, the reaction of Cp*WCl4(PMe3) ( 2 ) with sodium tetrasulfide, Na2S4, in dimethylformamide solution gives a mixture of mononuclear Cp*W(S)(S2)Cl ( 8 a ), dinuclear [Cp*W(S)(μ‐S)]2 ( 3 a ) and a trinuclear side‐product of composition Cp*2W3S7 ( 13 a ). Terminal sulfido ligands are replaced by terminal oxido ligands in solution in the presence of oxygen. Thus, 6 a is stepwise converted into Cp*W(O)(S)Cl ( 10 a ) and CpW(O)2Cl ( 12 a ), whereas 8 a gives Cp*W(O)(S2)Cl ( 11 a ) and 13 a leads to Cp*2W3(O)S6 ( 14 a ). The disulfido complexes 8 a and 11 a are desulfurized by triphenylphosphane to give 6 a and 10 a . The new complexes have been characterized by their IR and NMR spectra and by mass spectrometry.  相似文献   

2.
Preparation of Compounds AWCl6 from WCl6 in Cl?-containing Solvents In Glyme, ACN or CH2Cl2 WCl6 is reduced by Cl? to WCl6?. From those solutions compounds AWCl6 can be isolated with A = Cs (Glyme, ACN), A = Rb, K, NH4(ACN) and A = N(C2H5)4 (CH2Cl2). By concentrating of glyme-solutions a precipitate of A2WCl6 is formed by disproportionation. In methanol/HCl also solvolysis to oxo-compounds of W6+ takes place as function of the H+-concentration. With N(C2H5)4Cl not only chlorotungstates but also methoxy- and oxo-spezies of W5+ can be isolated.  相似文献   

3.
Black crystals of W2Cl7(CCl) were obtained from the reaction of WCl6 and As in CCl4 at 250 °C under solvothermal conditions. The crystal structure (orthorhombic, space group Pbca, a = 1196(1), b = 1215.6(7), c = 1584(1) pm, Z = 8) is built of infinite zig‐zag chains of dinuclear complexes connected via bridging Cl atoms. The individual complexes are face‐sharing double octahedra concatenated via bridging Cl ligands. Each W atom is in a distorted octahedral coordination environment of five Cl atoms an the carbon atom of the μ2 bridging chloromethylidyne ligand leading to the formula [{Cl2W(μ‐CCl)(μ2‐Cl)2WCl2}(μ‐Cl)]n. The short W‐W distance of 256 pm indicates a multiple W‐W bond, the W‐C bonds of 195 pm are in the typical range for μ2‐alkylidyne ligands, the C‐Cl bond of 167 pm is consistent with a sp1 hybridisation on the carbon atom.  相似文献   

4.
This study focuses on the application of the carbon arc‐generated molybdenum‐ and tungsten‐based catalyst systems, MoCl5? C and WCl6? C, to effect ring‐opening metathesis polymerization (ROMP) of bicyclo[2.2.1]hept‐2‐ene (norbornene). The results are compared with those previously obtained by the electrochemically generated MoCl5? ē? Al? CH2Cl2 and WCl6? ē? Al? CH2Cl2 systems. The polymer products are characterized using 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry and thermo gravimetric analysis. According to NMR spectra analyses, the molybdenum‐based catalyst system produced polynorbornene with ca 48% cis structure whereas tungsten system produced ca 56% cis structure polynorbornene and in both cases the polynorbornene had a blocky distribution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Reactions between tungsten halides are discussed along the series of compounds WCl6 → WCl4 → W6Cl12 ↔ W6Cl18 → [W6CCl18]n− ← [W3Cl13]u−, focusing on the two closely related tungsten chloride compounds whose structures compromise the well-known octahedro W6Cl18 cluster and the carbon-centered triprismo W6CCl18 cluster. Both clusters can be regarded as being built by merging two trigonal [W3Cl13]u− units in different ways. Syntheses, structural transformation reactions, and concepts regarding electronic structures are reported.  相似文献   

6.
The crystal structure of the title compound {(C5H14N2)2[Cd2Cl8]}n, (I), consists of hydrogen‐bonded 2‐methylpiperazinediium (H2MPPA2+) cations in the presence of one‐dimensional polymeric {[CdCl33‐Cl)]2−}n anions. The CdII centres are hexacoordinated by three terminal chlorides and three bridging chlorides and have a slightly distorted octahedral CdCl33‐Cl)3 arrangement. The alternating CdCl6 octahedra form four‐membered Cd2Cl2 rings by the sharing of neighbouring Cd–Cl edges to give rise to extended one‐dimensional ladder‐like chains parallel to the b axis, with a Cd...Cd distance of 4.094 (2) Å and a Cd...Cd...Cd angle of 91.264 (8)°. The H2MPPA2+ cations crosslink the [CdCl33‐Cl)]n chains by the formation of two N—H...Cl hydrogen bonds to each chain, giving rise to one‐dimensional ladder‐like H2MPPA2+–Cl2 hydrogen‐bonded chains [graph set R42(14)]. The [CdCl33‐Cl)]n chains are interwoven with the H2MPPA2+–Cl2 hydrogen‐bonded chains, giving rise to a three‐dimensional supramolecular network.  相似文献   

7.
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6] ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts.  相似文献   

8.
The crystal structure of the title compound, [MnCl(C28H22N2O2)(C2H6O)], has been determined at 173 (2) K in the non‐centrosymmetric space group P212121. The asymmetric unit contains two molecular units. An intermolecular O—H⋯Cl hydrogen bond is formed between the OH group of an ethanol mol­ecule coordinated to the Mn atom and the coordinated Cl anion, and so polymeric chains of Mn‐containing fragments are formed [O—H⋯Cl = 3.1281 (16) and 3.1282 (15) Å]. The Mn atoms have a pseudo‐octahedral coordination sphere, with the four donor atoms of the Schiff base forming an equatorial plane [Mn—O distances are 1.8740 (13), 1.8717 (13), 1.8749 (13) and 1.8823 (13) Å, and Mn—N distances are 1.9868 (15), 1.9910 (14), 1.9828 (15) and 1.9979 (14) Å]. The axial positions are occupied by an ethanol mol­ecule [Mn—O distances of 2.3069 (15) and 2.3130 (15) Å] and a Cl ligand [Mn—Cl distances of 2.5732 (6) and 2.5509 (6) Å].  相似文献   

9.
We report the time‐resolved supramolecular assembly of a series of nanoscale polyoxometalate clusters (from the same one‐pot reaction) of the form: [H(10+m)Ag18Cl(Te3W38O134)2]n, where n=1 and m=0 for compound 1 (after 4 days), n=2 and m=3 for compound 2 (after 10 days), and n=∞ and m=5 for compound 3 (after 14 days). The reaction is based upon the self‐organization of two {Te3W38} units around a single chloride template and the formation of a {Ag12} cluster, giving a {Ag12}‐in‐{W76} cluster‐in‐cluster in compound 1 , which further aggregates to cluster compounds 2 and 3 by supramolecular Ag‐POM interactions. The proposed mechanism for the formation of the clusters has been studied by ESI‐MS. Further, control experiments demonstrate the crucial role that TeO32?, Cl?, and Ag+ play in the self‐assembly of compounds 1 – 3 .  相似文献   

10.
Developing high‐performance all‐solid‐state batteries is contingent on finding solid electrolyte materials with high ionic conductivity and ductility. Here we report new halide‐rich solid solution phases in the argyrodite Li6PS5Cl family, Li6?xPS5?xCl1+x, and combine electrochemical impedance spectroscopy, neutron diffraction, and 7Li NMR MAS and PFG spectroscopy to show that increasing the Cl?/S2? ratio has a systematic, and remarkable impact on Li‐ion diffusivity in the lattice. The phase at the limit of the solid solution regime, Li5.5PS4.5Cl1.5, exhibits a cold‐pressed conductivity of 9.4±0.1 mS cm?1 at 298 K (and 12.0±0.2 mS cm?1 on sintering)—almost four‐fold greater than Li6PS5Cl under identical processing conditions and comparable to metastable superionic Li7P3S11. Weakened interactions between the mobile Li‐ions and surrounding framework anions incurred by substitution of divalent S2? for monovalent Cl? play a major role in enhancing Li+‐ion diffusivity, along with increased site disorder and a higher lithium vacancy population.  相似文献   

11.
The design of new organic–inorganic hybrid ionic materials is of interest for various applications, particularly in the areas of crystal engineering, supramolecular chemistry and materials science. The monohalogenated intermediates 1‐(2‐chloroethyl)pyridinium chloride, C5H5NCH2CH2Cl+·Cl, (I′), and 1‐(2‐bromoethyl)pyridinium bromide, C5H5NCH2CH2Br+·Br, (II′), and the ionic disubstituted products 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dichloride dihydrate, C12H14N22+·2Cl·2H2O, (I), and 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dibromide, C12H14N22+·2Br, (II), have been isolated as powders from the reactions of pyridine with the appropriate 1,2‐dihaloethanes. The monohalogenated intermediates (I′) and (II′) were characterized by multinuclear NMR spectroscopy, while (I) and (II) were structurally characterized using powder X‐ray diffraction. Both (I) and (II) crystallize with half the empirical formula in the asymmetric unit in the triclinic space group P. The organic 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dications, which display approximate C2h symmetry in both structures, are situated on inversion centres. The components in (I) are linked via intermolecular O—H…Cl, C—H…Cl and C—H…O hydrogen bonds into a three‐dimensional framework, while for (II), they are connected via weak intermolecular C—H…Br hydrogen bonds into one‐dimensional chains in the [110] direction. The nucleophilic substitution reactions of 1,2‐dichloroethane and 1,2‐dibromoethane with pyridine have been investigated by ab initio quantum chemical calculations using the 6–31G** basis. In both cases, the reactions occur in two exothermic stages involving consecutive SN2 nucleophilic substitutions. The isolation of the monosubstituted intermediate in each case is strong evidence that the second step is not fast relative to the first.  相似文献   

12.
The title compound, μ‐aqua‐1:2κ2O‐penta­aqua‐1κ2O,2κ3O‐μ‐3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine‐1κ2N1,N6:2κ2N2,N3‐chloro‐1κCl‐dinickel(II) trichloride trihydrate, [Ni2Cl(C16H14­N4)(H2O)6]Cl3·3H2O, consists of two NiII atoms, a 3,6‐bis(6‐methyl‐2‐pyridyl)­pyridazine mol­ecule, four Cl atoms and nine water mol­ecules. The two Ni atoms are octahedrally coordinated by N and Cl atoms, and by water mol­ecules, and the three six‐membered rings, a pyridazine and two picolines, are planar to within 0.181 (3) Å. The crystal structure is stabilized by an intra‐ and intermolecular hydrogen‐bonding scheme involving water–water and water–chlorine interactions.  相似文献   

13.
The structures of 3‐amino‐1,2R,4S,5‐tetra­ammoniopentane tetrachloride monohydrate, C5H21N54+·4Cl?·H2O, and 1,2R,3,4S,5‐penta­ammoniopentane tetra­chloro­zincate tri­chlor­ide monohydrate, (C5H22N5)[ZnCl4]Cl3·H2O, have been determined from single‐crystal X‐ray diffraction data. Both compounds show a complex network of N—H?O, O—H?Cl and N—H?Cl hydrogen bonds. There are a total of 14 H atoms of the tetra‐cation and 15 H atoms of the penta‐cation available for hydrogen bonding. However, due to the particular shape of the primary linear poly­ammonium cations, only a certain number of H atoms can be involved in hydrogen‐bond formation. It is further shown that hydrogen bonding has an influence on the conformation of such alkyl­ammonium cations.  相似文献   

14.
Dichloro Acetylene as Complex Ligand. Crystal Structure of PPh4[WCl5(C2Cl2)] · 0.5 CCl4 Tungsten hexachloride and dichloro acetylenediethyletherate react in boiling CCl4 in presence of C2Cl4 as reducing agent forming [Et2O · WCl4(C2Cl2)]. In vacuo the complex looses ether giving the dichloro acetylene complex [WCl4(C2Cl2)]2 which is dimeric with chloro bridges. Both complexes react with tetraphenylphosphonium chloride to form PPh4[WCl5(C2Cl2)] which is equally prepared by ligand exchange of PPh4[WCl5(C2I2)] with silver chloride. All dichloro acetylene complexes are red to brown crystalline solids sensitive to moisture, and are thermally and mechanically very stable compared with the highly explosive dichloro acetylene. The compounds are characterized by their i.r. spectra; [Et2O · WCl4(C2Cl2)] was additionally investigated by 13C-nmr spectroscopy. PPh4[WCl5(C2Cl2)] · 0.5 CCl4 formes dark brown crystals; according to the structural investigation by X-ray diffraction methods the compound crystallizes orthorhombic in the space group Pbca with 8 formula units per unit cell (1317 observed, independent reflexions, R = 0.049). The cell dimensions are a = 1702 pm, b = 1675 pm and c = 2228 pm. The compound consists of [WCl5(C2Cl2)]? anions and PPh4⊕ cations including CCl4 molecules without bonding interactions. The tungsten atoms are seven-coordinated by five chlorine atoms and two carbon atoms. The dichloro acetylene ligand is bonded symmetrically side-on and has a C? C bond length of 128 pm. The W? C distances are 201 pm, the four equatorial Cl atoms have W? Cl bond lengths of 234 pm whereas the chlorine atom in trans-position to the W? C2 group is situated in a distance of 244 pm.  相似文献   

15.
The reaction of metallic bismuth with either tungsten tetrachlorideoxide WOCl4 at 650 K or tungsten tetrabromideoxide WOBr4 at 670 K, respectively, leads to BiX2[W2O2X6] (X = Cl, Br) as black, lustrous crystal needles. The crystal structure determinations (triclinic, P$\bar{1}$ ) show the two isotypic structures to be closely related to Hg0.55[W2O2Cl6] with the presence of 1D‐polymeric W2O2X6 double strands. Dinuclear [Bi2X4]2+ cations are embedded in the host structure via secondary W–X ··· Bi bonds. Unlike the other members of theMy[W2O2X6] structure family, which crystallize monoclinic and show crystallographic equivalent tungsten atoms, BiX2[W2O2X6] has independent tungsten sites. Nevertheless, an assignment of an individual oxidation state to the tungsten atoms within the W2 group (W–W 2.8321(4) Å for X = Cl, 2.8985(4) Å for X = Br) is not possible and a dynamic intervalent state W(IV, V) is assumed. Electrical conductivity measurements for BiCl2[W2O2Cl6] show semi‐conductive behavior with a very small band gap of 70 meV and a high conductivity of around 0.5 Ω–1cm–1 at temperatures above 220 K. A temperature dependence of the activation energy of charge transport is present and interpreted by the Varshni model.  相似文献   

16.
Reaction of 2,2-Dimethylpropylidynephosphane with Tungsten Hexachloride as well as the Crystal Structures of [(Cl3PO)WCl4(H9C4? C?C—C4H9)] and [(H5C6)4As][WCl6] The reaction of 2,2-dimethylpropylidynephosphane, (CH3)3C? C?P|, with tungsten hexachloride suspended in POCl3 results, with oxidation of the phosphorus atom, in 2,2,5,5-tetramethylhex-3-yne. This compound reacts with tungsten tetrachloride simultaneously formed to give the alkyne complex [(Cl3PO)WCl4(H9C4? C?C—C4H9)], which is dark green in colour. A small amount of tungsten hexachloride is reduced merely to tungsten pentachloride; after the addition of tetraphenyl arsonium chloride it can be isolated as [(H5C6)4As][WCl6]. For this compound, a new and very simple synthesis from WCl6, [(H5C6)4As]Cl and C2Cl4 as reducing agent is described. The structure of [(Cl3PO)WCl4(H9C4? C?C? C4H9)] has been determined from X-ray diffraction data (R = 5.8%). The complex crystallizes in the monoclinic space group P21/n with: {a = 1510; b = 1517; c = 849 pm; β = 93.1°; Z = 4}. The tungsten atom is sevenfold coordinated by four equatorial chlorine atoms, by the C°C group of the acetylene ligand and by the oxygen atom of the POCl3 molecule in trans position. The bulky acetylene ligand which is nearly symmetrically bound shifts the chlorine atoms towards the solvated POCl3 molecule so that no common plane with the tungsten atom is possible. With 130 pm the C°C bond length of the 2,2,5,5-tetramethyl-3-yne ligand corresponds to a C°C double bond. The i.r. spectrum of [(H5C6)As][WCl6] shows two WCl6 strectching vibrations and therefore proves a reduction of octahedral symmetry. In agreement with the results of a crystal structure determination (space group P4/n; a = 1301; c = 780 pm; Z = 2.7%) the [WCl6]?-anion has nearly exact C4V symmetry with somewhat shorter W? Cl bond lengths parallel to the fourfold axis of rotation.  相似文献   

17.
The title one‐dimensional chain polymer complex, [Mn(C6H4NO3)Cl(C6H5N)2]n, was isolated from the reaction of MnCl2 with 6‐oxo‐1,6‐dihydro­pyridine‐2‐carboxylic acid (HpicOH) in pyridine. The asymmetric unit contains one [Mn(HPicO)Cl(py)2] moiety (py is pyridine), with the (HpicO) ligand acting in a tridentate manner via the two carboxyl­ate O atoms and the pyridone O atom. The operation of inversion centres generates eight‐ and 14‐membered rings and, in conjunction with an a‐axis translation, leads to an infinite chain extending along [100]. The Mn⋯Mn separations in this chain are 5.1069 (6) and 7.1869 (6) Å. The MnII atom has a distorted octahedral coordination, with trans‐axial pyridine ligands and with three O atoms and the Cl atom in the equatorial plane. The conformation of the 14‐membered ring is stabilized by pairs of inversion‐related N—H⋯O hydrogen bonds.  相似文献   

18.
Synthesis of five binary complex salts with an [Ir(NH3)5Cl]2+ complex cation is described. The counterions are [ReCl6]2–, [IrCl6]2–, [ReBr6]2–, and Cl. A polycrystal X-ray diffraction study has been performed for [Ir(NH3)5Cl]2[ReCl6]Cl2, and its crystal structure has been determined. A series of Ir x Re1–x phases (0.5 x > 1) were obtained by reductive thermolysis. For the Ir-Re system, the history of the V/Z(x) dependence has been refined.Original Russian Text Copyright © 2004 by S. A. Gromilov, S. V. Korenev, I. V. Korolkov, K. V. Yusenko, and I. A. BaidinaTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 3, pp. 508–515, May–June 2004.  相似文献   

19.
A new bis(pyrazolylpyridine) ligand (H2L) has been prepared to form functional [Fe2(H2L)3]4+ metallohelicates. Changes to the synthesis yield six derivatives, X@[Fe2(H2L)3]X(PF6)2?xCH3OH ( 1 , x=5.7 and X=Cl; 2 , x=4 and X=Br), X@[Fe2(H2L)3]X(PF6)2?yCH3OH?H2O ( 1 a , y=3 and X=Cl; 2 a , y=1 and X=Br) and X@[Fe2(H2L)3](I3)2?3 Et2O ( 1 b , X=Cl; 2 b , X=Br). Their structure and functional properties are described in detail by single‐crystal X‐ray diffraction experiments at several temperatures. Helicates 1 a and 2 a are obtained from 1 and 2 , respectively, by a single‐crystal‐to‐single‐crystal mechanism. The three possible magnetic states, [LS–LS], [LS–HS], and [HS–HS] can be accessed over large temperature ranges as a result of the structural nonequivalence of the FeII centers. The nature of the guest (Cl? vs. Br?) shifts the spin crossover (SCO) temperature by roughly 40 K. Also, metastable [LS–HS] or [HS–HS] states are generated through irradiation. All helicates (X@[Fe2(H2L)3])3+ persist in solution.  相似文献   

20.
Diiodoacetylene Complexes of Tungsten(IV). Crystal Structure of PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 Tungsten hexachloride and diiodoacetylene react in CCl4 solution forming [WCl4(I? C?C? I)]2 which has a dimer structure with chloro bridges. In CH2Cl2, it reacts with PPh4Cl yielding PPh4[WCl5(I? C?C? I)] · 0.5 CH2Cl2. In both compounds the C2I2 ligands attain a marked increase in thermal stability by their side-one coordination to the tungsten atoms. The crystal structure of the PPh4 salt was determined with X-ray diffraction data (3879 observed reflexions, R = 0.050). PPh4[WCl5(C2I2)] · 0.5 CH2Cl2 crystallizes in the space group P21/n with 8 formula units per unit cell. The lattice constants are a = 1723.0, b = 1681.2, c = 2214.6 pm and β = 94.38°. There are two crystallographically independent [WCl5(C2I2)]? ions which differ only slightly from one another. The C2I2 ligand has a staggered arrangement relative to the W? Cl groups, with C? C bond lengths of 127 pm. The infrared spectra are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号