首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of Bunsen's cacodyl disulfide, Me2As(S)‐S‐AsMe2, with heavy metal cations in methanol produces insoluble salts (complexes) of dimethyldithioarsinic acid, Me2AsS2H, and dimethyl arsenium ion, Me2As:+. This arsenium ion prefers to react with Me2As(S)‐S‐AsMe2, when in excess, compared to AcO? or MeOH/H2O and it is also reactive towards sulfur (Sx, x = 1‐8) producing the stabilized dimethylarsino sulfenium cation, . The complexes (Me2AsS2)xM (x = 1 or 2) are unstable in the presence of their own heavy metal cations decomposing to colored solids. In an attempt to prepare salts of Me2AsSH, the reactions of (Me2AsS2)xM with triphenylphosphine and trimethyl phosphite gave the metal sulfide and Me2As‐S‐AsMe2 instead.  相似文献   

2.
Trimethylsilyldimethylarsane Me3SiAsMe2 was used as a reagent for the substitution of fluorine in polyfluoroarenes C6F5X (X = F, H, Cl) and C5NF5 by the Me2As group. The reactions occur between 50 — 180 °C, either in benzene or without solvent, to give as a rule 4‐X‐1‐(dimethylarsano)tetrafluorobenzenes XC6F4AsMe2, ( 1—3 ) and 4‐dimethylarsano‐tetrafluoropyridine C5NF4AsMe2 ( 4 ), respectively, in yields between 43 and 94 %. In the case of C6F6, also double substitution is observed affording 1, 4‐bis(dimethylarsano)tetrafluorobenzene 5 in addition to the monosubstituted derivative. The time and temperature dependencies of the reactions increase in the sequence: C6F6< C6F5H < C6F5Cl < C5NF5. The arsanes 1 and 4 were transformed to the potentially valuable bidentate ligands 1‐(dimethylarsano)‐4‐(dimethylphosphano)tetrafluorobenzene 6 and 4‐(dimethylarsano)‐2‐(dimethylphosphano)trifluoropyridine 8 by reaction with trimethylsilyl‐dimethylphosphane Me3SiPMe2. 6 reacts with oxygen to yield the corresponding phosphane oxide 7 . Trimethylsilyl‐dimethylamine Me3SiNMe2 also was successfully tested as a reagent for the dimethylamination of polyfluoroarenes C6F5X [X = F, H, Cl, CF3, P(S)Me2], 1‐P(S)Me2‐4‐H‐C6F4 and 4‐X‐C5NF4 [X = F, PMe2, P(S)Me2]. Sulfuration of the new Me2P derivatives 8 and 20 leads to the corresponding thiophosphanes 9 and 21 (Schemes 2 and 3). Furthermore, the recently reported very efficient one‐pot synthesis of Me2P substituted polyfluoroarenes (e.g. XC6F4PMe2 with X = F, Me2PC6F4) was extended to the preparation of Me2As and MeS derivatives of pentafluoropyridine using a mixture of Me3SnH, As2Me4 (or S2Me2) and C5NF5 as precursors for the one‐pot reaction. The expected products 4‐(dimethylarsano)tetrafluoropyridine 4 and 4‐(methylthio)tetrafluoropyridine 22 , respectively, were obtained in 84 and 82 % isolated yields. The novel compounds were characterized by spectroscopic (NMR, MS) and analytical data. Compounds 5 , 7 , 9 and 21 could be isolated in form of single crystals and their structures have been studied by X‐ray diffraction.  相似文献   

3.
Structural Chemistry of the Alkyl- and Arylhaloarsenates(III) [Me2As2Cl5], [RAsCl3], [R2As2Br6]2– (R = Me, Et, Ph) and [Ph2AsX2] (X = Cl, Br) The alkyl- and arylhaloarsenates(III) [Ph4P][Me2As2Cl5] ( 1 ), [Ph4P][RAsCl3] (R = Me, Et, Ph, 2 – 4 ), [Me3PhN][PhAsCl3] ( 5 ), [Ph4P]2[R2As2Br6] (R = Me, Et, Ph, 6 – 8 ), [n-Pr4N][Ph2AsCl2] ( 9 ) and [n-Bu4N][Ph2AsBr2] ( 10 ) have been prepared and their structures established by X-ray diffraction. In contrast to the chloroarsenates(III) 2 – 5 , which all contain isolated ψ-trigonal bipyramidal anions [RAsCl3], the analogous bromoarsenates(III) 6 – 8 exhibit dimeric structures. Whereas the trans sited As–Cl distances in 2 and 3 are very similar a pronounced degree of asymmetry is apparent for the Cl–As–Cl three-centre bonds in 4 and 5 [2.396(1) and 2.602(1) Å in 5]. In 6 and 7 Ci symmetry related RAsBr2 units are connected through long As…Br bonds [2.926(1) and 3.116(2) Å in 6 ]. The bromophenylarsenate(III) anion of 8 which contains two effectively undistorted ψ-trigonal bipyramids [PhAsBr3] associated by weak As…Br interactions [3.117(2) Å]. In view of its very long bridging As…Cl distances the [Me2As2Cl5] anion in 1 can, as 6 an 7 , be regarded as two MeAsCl2 molecules weakly linked through a chloride ion.  相似文献   

4.
Reactive E=C(p‐p)π‐Systems. 54 [1] Reactions of perfluoro‐2‐arsapropene, F3CAs=CF2 (1), with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se) The reactions of the perfluoro‐2‐arsapropene ( 1 ) with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se), respectively, proceed via addition to the As=C double bond yielding either secondary arsanes F3C(H)AsCF2X (X = NMe2, PMe2, OMe, SMe) or AsX derivatives (X = AsMe2, SeMe). Me2‐AsH is obviously a border case nucleophile because, besides the AsX derivative as main product, small amounts of the arsane are formed indicative for the reverse addition pathway. With the strong base Me2NH, the addition is followed immediately by HF elimination producing the fairly stable arsaalkene F3CAs=C(F)NMe2 ( 4 ) which had already been obtained by reaction of HAs(CF3)2 with three equivalents of Me2NH. The novel rather labile compounds were identified by spectroscopic (NMR, GC/MS) investigations. – Quantum chemical DFT calculations [B3LYP/6‐311+G(d,p)] were carried out to determine the relative energy of the isomeric products and the thermodynamics of the addition reactions.  相似文献   

5.
cis‐trans‐Isomerism in (Me4Sb)2[Ph2Sb2I6] Crystals of cis‐(Me4Sb)2[Ph2Sb2I6] ( 1 a ) are formed by reaction of PhSbI2 and Me4SbI in ethanol/petroleum ether at –7 °C. In ethanol/acetone crystals of trans‐(Me4Sb)2[Ph2Sb2I6] · acetone ( 1 b ) form. The X‐ray crystal structure analyses reveal that both isomers consist of tetrahedral cations and of dimeric anions with the geometry of two edge sharing tetragonal pyramids. The phenyl groups possess apical cis ( 1 a ) or trans ( 1 b ) positions relative to the I2SbI2SbI2 plane. The acetone molecules in 1 b are non coordinating.  相似文献   

6.
Studies of Polyhalides. 22. On Dimethyldiphenylammoniumpolyiodides (Me2Ph2N)In with n = 3, 13/3, 6, and 8: Preparation and Crystal Structures of a Triiodide (Me2Ph2N)I3, Tridecaiodide (Me2Ph2N)3I13, Dodecaiodide (Me2Ph2N)2I12, and Hexadecaiodide (Me2Ph2N)2I16 The new compounds [(CH3)2(C6H5)2N]I3, [(CH3)2(C6H5)2N]3I13, [(CH3)2(C6H5)2N]2I12 and [(CH3)2(C6H5)2N]2I16 have been prepared by the reaction of dimethyldiphenylammonium iodide [(CH3)2(C6H5)2N]I with iodine I2 in ethanol. Their crystal structures have been determined by single crystal X-ray diffraction methods. The structure of the triiodide may be described as a layerlike packing of pairs of nearly linear symmetric anions and tetraedral cations. The tridecaiodide forms zig-zag chains of iodide ions and iodine molecules with the iodide ion also weakly coordinated by two pentaiodide groups. The dodecaiodide is built from two pentaiodide-groups, which are bridged by an iodine molecule and connected with secondary bonds forming double chains. The hexadecaiodide ion forms layers built up from two heptaiodide groups and one iodine molecule. Thus the dimethyldiphenylammonium cation stabilizes a unique series of polyiodides of extraordinary composition and structure.  相似文献   

7.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2.  相似文献   

8.
[Ph3Sn(O2AsMe2)] ( 1 ) and [PhClSn(O2AsMe2)(μ‐OMe)]2 ( 3 ) have been synthesized by treatment of Ph3SnCl and Ph2SnCl2 with Na(O2AsMe2) in methanol, respectively. [Bu2ClSn(O2AsMe2)] ( 2 ) has been prepared by the reaction of Bu2SnCl2 with HO2AsMe2 in methanol. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/n with a = 699.8(1), b = 1961.4(2), c = 1433.6(2) pm, β = 95.17(1)°, and Z = 4. 2 also crystallizes monoclinic in the space group P21/m, the cell parameters being a = 480.6(1), b = 1992.7(2), c = 808.8(1) pm, β = 103.726(5)°, and Z = 2. Both compounds form infinite chains with alternating (Me2AsO2)? and (R3Sn)+ or (R2ClSn)+ units. The dimer 3 consists of 8‐membered (OSnOAs)2 rings in which the tin atoms are bridged by methanolate bridges. It crystallizes triclinic in the space group with a = 822.8(2), b = 910.4(2), c = 929.2(2) pm, α = 77.04(3)°, β = 82.35(3)°, γ = 68.69(3)°, and Z = 1 for the dimer. The vibrational and mass spectra of 1 , 2 and 3 are given and discussed.  相似文献   

9.
Reactions of pyrimidine‐2‐thione (HpymS) with PdII/PtIV salts in the presence of triphenyl phosphine and bis(diphenylphosphino)alkanes, Ph2P‐(CH2)m‐PPh2 (m = 1, 2) have yielded two types of complexes, viz. a) [M(η2‐N, S‐ pymS)(η1‐S‐ pymS)(PPh3)] (M = Pd, 1 ; Pt, 2 ), and (b) [M(η1‐S‐pymS)2(L‐L)] {L‐L, M = dppm (m = 1) Pd, 3 ; Pt, 4 ; dppe (m = 2), Pd, 5 ; Pt, 6 }. Complexes have been characterized by elemental analysis (C, H, N), NMR spectroscopy (1H, 13C, 31P), and single crystal X‐ray crystallography ( 1 , 2 , 4 , and 5 ). Complexes 1 and 2 have terminal η1‐S and chelating η2‐N, S‐modes of pymS, while other Pd/Pt complexes have only terminal η1‐S modes. The solution state 31P NMR spectral data reveal dynamic equilibrium for the complexes 3 , 5 and 6 , whereas the complexes 1 , 2 and 4 are static in solution state.  相似文献   

10.
Synthesis, Crystal Structure, and Properties of the Complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)], [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)], [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] and [{(Me2PhP)2(CO)Cl2Re≡N}2ReNCl2(PMe2Ph)] The dinuclear complexes [(H2O)Cl4Os≡N‐IrCl(C5Me5)(AsPh3)]·H2O ( 1 ·H2O), [(Ph3Sb)Cl4Os≡N‐IrCl(C5Me5)(SbPh3)] ( 2 ), and [(Ph3Sb)2Cl3Os≡N‐IrCl(COD)] ( 3 ) result from the reaction of the nitrido complexes [(Ph3As)2OsNCl3] and [(Ph3Sb)2OsNCl3] with the iridium compounds [IrCl2(C5Me5)]2 and [IrCl(COD)]2 in dichloromethane. 1 crystallizes as 1 ·H2O in form of green platelets in the monoclinic space group Cm and a = 1105.53(6); b = 1486.76(9); c = 2024.88(10) pm, β = 97.191(4)°, Z = 4. The formation of 1 in air involves a ligand exchange, and the coordination of a water molecule in trans position to the Os‐N triple bond. The resulting complex fragments [(H2O)Cl4Os≡N] and [IrCl(C5Me5)(AsPh3)] are connected by an asymmetric nitrido bridge Os≡N‐Ir. The nitrido bridge is characterised by an Os‐N‐Ir bond angle of 173.7(7)°, and distances Os‐N = 168(1) pm and Ir‐N = 191(1) pm. 2 crystallizes in clumped together brown platelets with the space group and a = 1023.3(3), b = 1476.2(3), c = 1872.5(6) pm, α = 74.60(2), β = 73.84(2), γ = 76.19(2)°, Z = 2. In 2 the asymmetric nitrido bridge Os≡N‐Ir joins the two complex fragments [(Ph3Sb)Cl4Os≡N] and [IrCl(C5Me5)(SbPh3)], which are formed by a ligand exchange reaction. 3 forms dark green crystals with the triclinic space group and a = 1079.4(1), b = 1172.3(1), c = 1696.7(2) pm, α = 101.192(9),β = 92.70(1), γ = 92.61(1)°, Z = 2. The distances in the almost linear nitrido bridge (Os≡N‐Ir = 175.3(7)°) are Os‐N = 171(1) pm and Ir‐N = 183(1) pm. The reaction of [ReNCl2(PMe2Ph)3] with [Mo(CO)3(NCMe)3] unexpectedly affords the trinuclear complex [{(Me2PhP)2(OC)Cl2Re≡N}2ReNCl2(PMe2Ph)] ( 4 ) as the main product. It forms triclinic brown crystals with the composition 4 ·2THF and the space group (a = 1382.70(7), b = 1498.58(7), c = 1760.4(1) pm, α = 99.780(7), β = 99.920(7), γ = 114.064(6)°, Z = 2). In the trinuclear complex, the central fragment, [ReNCl2(PMe2Ph)] is joined in trans position to two nitrido complexes [(Me2PhP)2(CO)Cl2Re≡N], giving an almost linear Re≡N‐Re‐N≡Re arrangement. The bond angles and distances in the nitrido bridges are Re‐N‐Re = 167.8(3)°, Re‐N = 171.1(8) pm and 204.2(8) pm; and Re‐N‐Re = 168.1(4)°, Re‐N = 170.9(9) and 203.5(9) pm respectively. As expected, the Re‐N bond length to the terminal nitrido ligand on the central Re atom is much shorter at 161.2(9) pm than the triple bonds of the asymmetric bridges.  相似文献   

11.
Reaction of (R,R)‐(N,N′)‐Diisopropylcyclohexyl‐1,2‐diamine with Me2MCl (M = Ga, In) (R,R)‐(N,N′)‐Diisopropylcyclohexyl‐1,2‐diamine (H2L) was reacted with Me2GaCl and Me2InCl in boiling toluene, respectively. In both cases the salt [Me2M(H2L)][Me2MCl2] [M = Ga ( 1 ), In ( 2 )] was formed. 1 and 2 were characterized by NMR and vibrational spectroscopy. In addition, an X‐ray structure determination was applied on 2 . According to the spectroscopical and structural findings 1 and 2 consist of cations [Me2M(H2L)]+ and anions [Me2MCl2]?.  相似文献   

12.
Tetraethyl­ammonium 7‐di­methyl­sulfanyl‐nido‐dodeca­hydro­undecaborate, [Et4N][7‐Me2S‐nido‐B11H12] or C8H20N+·C2H18B11S, is a product of the deprotonation of [7‐Me2S‐nido‐B11H13] with KHBEt3 and precipitation with tetraethyl­ammonium chloride. The effect of removing one endo‐terminal H atom is to cause a general contraction of the open‐face B—B distances.  相似文献   

13.
In a high‐yield one‐pot synthesis, the reactions of [Cp*M(η5‐P5)] (M=Fe ( 1 ), Ru ( 2 )) with I2 resulted in the selective formation of [Cp*MP6I6]+ salts ( 3 , 4 ). The products comprise unprecedented all‐cis tripodal triphosphino‐cyclotriphosphine ligands. The iodination of [Cp*Fe(η5‐As5)] ( 6 ) gave, in addition to [Fe(CH3CN)6]2+ salts of the rare [As6I8]2? (in 7 ) and [As4I14]2? (in 8 ) anions, the first di‐cationic Fe‐As triple decker complex [(Cp*Fe)2(μ,η5:5‐As5)][As6I8] ( 9 ). In contrast, the iodination of [Cp*Ru(η5‐As5)] ( 10 ) did not result in the full cleavage of the M?As bonds. Instead, a number of dinuclear complexes were obtained: [(Cp*Ru)2(μ,η5:5‐As5)][As6I8]0.5 ( 11 ) represents the first Ru‐As5 triple decker complex, thus completing the series of monocationic complexes [(CpRM)2(μ,η5:5‐E5)]+ (M=Fe, Ru; E=P, As). [(Cp*Ru)2As8I6] ( 12 ) crystallizes as a racemic mixture of both enantiomers, while [(Cp*Ru)2As4I4] ( 13 ) crystallizes as a symmetric and an asymmetric isomer and features a unique tetramer of {AsI} arsinidene units as a middle deck.  相似文献   

14.
Halide Ions as Catalyst: Metalcentered C–C Bond Formation Proceeded from Acetonitril AlMe3 reacts at 20 ?C in acetonitrile to the complex [Me3Al(NCMe)] ( 1 ). By addition of cesium halides (X = F, Cl, Br) a trimerisation to the heterocycle [Me2Al{HNC(Me)}2C(CN)] ( 2 ) has been observed. The reaction might be carried out under catalytic conditions (1–2 mol% CsX). The gallium complex [Me2Ga{HNC(Me)}2 · C(CN)] ( 3 ), generated under similar reaction conditions, can be converted to the silylated compound [Me2Ga{Me3SiNC(Me)}2C(CN)] ( 4 ) by successive treatment with two equivalents n‐butyllithium and Me3SiCl. 3 reacts under hydrolysis conditions (1 M hydrochloric acid) to the iminium salt [{H2NC(Me)}2C(CN)]Cl ( 5 ). A mixture of H2O, Ph2PCl and 3 in THF/toluene leads in a unusual conversion to the diphospane derivative [Ph2P–P(O)(Me2GaCl)] ( 6 ). 1 , 2 , 4 , 5 and 6 have been characterized by NMR, IR and MS techniques. X‐ray structure analyses were performed with 1 , 2 , 4 and 6 · 0.5 toluene. According this 1 possesses an almost linear axis AlNCC [Al1–N1–C3: 179,5(2)?; N1–C3–C4: 179,7(4)?]. 2 is an AlN2C3 six‐membered heterocycle with two iminium fuctions. One N–H group is responsible for a intermolecular chain‐formation through hydrogen bridges to an adjacent nitrile group along the direction [010]. The basic structural motif of the heterocycle 3 has been maintained after silylation to 4 . In 6 · 0.5 toluene an unit Me2GaCl, originated from 3 , is coordinated to the oxygen atom of the diphosphane oxide Ph2P–P(O)Ph2.  相似文献   

15.
Die Reaktion von [Cp′′′Co(η4‐P4)] ( 1 ) (Cp′′′=1,2,4‐tBu3C5H2) mit MeNHC (MeNHC=1,3,4,5‐tetramethylimidazol‐2‐ylidene) führt über eine NHC‐induzierte Phosphorkationen‐Abstraktion zum Ringkontraktionsprodukt [(MeNHC)2P][Cp′′′Co(η3‐P3)] ( 2 ), welches das erste Beispiel eines anionischen CoP3‐Komplexes repräsentiert. Solche von NHCs induzierten Ringkontraktionsreaktionen lassen sich ebenfalls auf Tripeldecker‐Sandwich‐Komplexe anwenden. So werden die Komplexe [(Cp*Mo)2(μ,η6:6‐E6)] ( 3 a , 3 b ) (Cp*=C5Me5; E=P, As) zu den Komplexen [(MeNHC)2E][(Cp*M)2(μ,η3:3‐E3)(μ,η2:2‐E2)] ( 4 a , 4 b ) transformiert, wobei 4 b das erste strukturell charakterisierte Beispiel eines NHC‐substituierten AsI‐Kations darstellt. Darüber hinaus führt die Reaktion des Vanadium‐Komplexes [(Cp*V)2(μ,η6:6‐P6)] ( 5 ) mit MeNHC zur Bildung der neuartigen Komplexe [(MeNHC)2P][(Cp*V)2(μ,η6:6‐P6)] ( 6 ), [(MeNHC)2P][(Cp*V)2(μ,η5:5‐P5)] ( 7 ) bzw. [(Cp*V)2(μ,η3:3‐P3)(μ,η1:1‐P{MeNHC})] ( 8 ).  相似文献   

16.
Metal Complexes of Functionalized Sulfur‐containing Ligands. XVII Synthesis of S ‐Oxides of 1,2,4‐Trithiolane, 1,2,4,5‐Tetrathiane as well as 1,2,3,5,6‐Pentathiepane, and their Reactions with (Ph3P)2Pt(η2‐C2H4). X‐Ray Structure Analysis of 3,3,5,5‐Tetraphenyl‐1,2,4‐trithiolane 1‐oxide 3,3,5,5‐Tetraphenyl‐1,2,4‐trithiolan ( 1 ) was oxidized using m‐chloroperbenzoic acid to give, selectively, the 3,3,5,5‐tetraphenyl‐1,2,4‐trithiolane 1‐oxide ( 2 ). 2 was characterized structurally. The reaction of octamethyl tetrathiadispiro[3.2.3.2]dodecane‐2,9‐dione ( 3 ) with trifluoroperacetic acid at –50 °C yielded the corresponding 5‐oxide 4 . Oxidation of octamethyl pentathiadispiro[3.3.3.2]tridecane‐2,9‐dione ( 5 ) with m‐chloroperbenzoic acid at 0 °C gave the 12‐oxide 6 . Treatment of 2 with two equivalents of (Ph3P)2Pt(η2‐C2H4) ( 7 ) afforded a mixture (1 : 1) of the complexes (Ph3P)2PtSCPh2S ( 8 ) and (Ph3P)2Pt(η2‐Ph2C=S=O) ( 9 ), respectively.  相似文献   

17.
Deprotonation of the MnI NHC‐phosphine complex fac‐[MnBr(CO)32P,C‐Ph2PCH2NHC)] ( 2 ) under a H2 atmosphere readily gives the hydride fac‐[MnH(CO)32P,C‐Ph2PCH2NHC)] ( 3 ) via the intermediacy of the highly reactive 18‐e NHC‐phosphinomethanide complex fac‐[Mn(CO)33P,C,C‐Ph2PCHNHC)] ( 6 a ). DFT calculations revealed that the preferred reaction mechanism involves the unsaturated 16‐e mangana‐substituted phosphonium ylide complex fac‐[Mn(CO)32P,C‐Ph2P=CHNHC)] ( 6 b ) as key intermediate able to activate H2 via a non‐classical mode of metal‐ligand cooperation implying a formal λ5‐P–λ3‐P phosphorus valence change. Complex 2 is shown to be one of the most efficient pre‐catalysts for ketone hydrogenation in the MnI series reported to date (TON up to 6200).  相似文献   

18.
The Reactions of tBu2P–P=P(Me)tBu2 and (Me3Si)tBuP–P=P(Me)tBu2 with PR3 tBu2P–P=P(Me)tBu2 ( 1 ) reacts at 20 °C with PMe3, PEt3, P(c‐Hex)3, P(p‐Tol)3, PPh2Me, PPh2Et, PPhEt2, PPh2iPr, PPh3 and P(NEt2)3 yielding tBu2P–P=PR3 and tBu2PMe; however, PtBu3, PtBu2(SiMe3) and tBu2PCl don't. tBu2PH and 1 form tBu2P–PH–PtBu2 which yields tBu2P–P=PEt3 when treated with PEt3. Ph2PH, tBuPH2, PH3, Ph2PCl and EtOH don't substitute the tBu2PMe group in 1 , instead, the molecule is decomposed. With PEt3, (Me3Si)tBuP–P=P(Me)tBu2 forms (Me3Si)tBuP–P=PEt3. The compounds tBu2P–P=PR3 decompose at 20 °C to different degrees giving P‐rich consecutive products of the phosphinophosphinidene.  相似文献   

19.
On Reactions of Hexachlorodiberyllate with Trimethylsilyl‐N‐dimethylamide. Crystal Structures of (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)], (Ph4P)[BeCl3(HNMe2)], and (Ph4P)(H2NMe2)[BeCl4] Reactions of bis‐tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], with trimethylsilyl‐N‐dimethylamide under different conditions lead to the novel chloroberyllate derivatives (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)] ( 1 ), (Ph4P)[BeCl3(HNMe2)] ( 2 ), and (Ph4P)(H2NMe2)[BeCl4] ( 3 ). 1 ‐ 3 were characterized by IR spectroscopy and crystal structure determinations. 1· 4CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1115.6(1), b = 2110.7(2), c = 2145.0(3) pm, α = 71.38(1)°, β = 85.66(1)°, γ = 85.24(1)°, R1 = 0.0732. The [Be2Cl5(OSiMe3)]2— ion in the structure of 1 is derived from the [Be2Cl6]2— ion by substitution of a μ‐Cl ligand by the oxygen atom of the (OSiMe3) group. The second anion, [BeCl3(Me2NSiMe3)], can be described as donor acceptor complex with a short Be—N bond of 179(1) pm. 2 : Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1063.1(1), b = 1072.0(1), c = 1238.3(1) pm, α = 87.55(1)°, β = 74.86(1)°, γ = 69.73(1)°, R1 = 0.0299. The anion of 2 forms a centrosymmetric dimer [BeCl3(HNMe2)]22— via N—H···Cl bridges of the two donor acceptor complex units with Be—N separations of 175.2(2) pm. 3 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 926.9(1), b = 2164.7(1), c = 2732.7(1) pm, R1 = 0.0495. The structure of 3 contains centrosymmetric ion quadrupoles [(Me2NH2)(BeCl4)]22— forming by N—H···Cl bridges between (Me2NH2)+ and [BeCl4]2— ions.  相似文献   

20.
Deprotonation of the aminophosphanes Ph2PN(H)R 1a – 1h [R = tBu ( 1a ), 1‐adamantyl ( 1b ), iPr ( 1c ), CPh3 ( 1d ), Ph ( 1e ), 2,4,6‐Me3C6H2 (Mes) ( 1f ), 2,4,6‐tBu3C6H2 (Mes*) ( 1g ), 2,6‐iPr2C6H3 (DIPP) ( 1h )], followed by reactions of the phosphanylamide salts Li[Ph2PNR] 2a , 2b , 2g , and 2h with the P‐chlorophosphaalkene (Me3Si)2C=PCl, and of 2a – 2g with (iPrMe2Si)2C=PCl, gave the isolable P‐phosphanylamino phosphaalkenes (Me3Si)2C=PN(R)PPh2 3a , 3b , 3g , and (iPrMe2Si)2C=PN(R)PPh2 4a – 4g . 31P NMR spectra, supported by X‐ray structure determinations, reveal that in compounds 2a , 2b , 3a , and 3b , with bulky N‐alkyl groups the Si2C=P–N–P skeleton is non‐planar (orthogonal conformation), whereas 3g , 3h , and 4g with bulky N‐aryl groups exhibit planar conformations of the Si2C=P–N–P skeleton. Solid 3g and 4g exhibit cisoid orientation of the planar C=P–N–C units (planar I) but in solid 3h the transoid rotamer is present (planar II). From 3g , 4d , and 4g mixtures of rotamers were detected in solution by pairs of 31P NMR patterns ( 3h : line broadening).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号