共查询到20条相似文献,搜索用时 15 毫秒
1.
Roland Baier Erhard Seipp Rudolf Hoppe 《Monatshefte für Chemie / Chemical Monthly》1987,118(6-7):677-690
The crystal structure of K6[CdO4] and Rb2CdO2 has been determined from single crystal X-ray diffraction data and refined toR=0.058 (K6[CdO4]) andR=0.088 (Rb2CdO2). K6[CdO4] crystallizes hexagonal, space group P63mc with lattice constantsa=867.42 (6),c=665.5 (1) pm,c/a=0.767 andZ=2. It is isotypic with Na6[ZnO4]. Rb2CdO2 is orthorhombic, space group Pbcn witha=1045.0 (2),b=629.1 (1),c=618.3 (1) pm,Z=4, and crystallizes with the K2CdO2 structure type. The crystal structures can be deduced from the motif of a closest packed arrangement of O2– with hexagonal (K6[CdO4]) or cubic (Rb2CdO2) stacking. The tetrahedra occupied by Cd2+ are isolated (K6[CdO4]) or edge-shared (formation of infinite SiS2-like chains [CdO4/2]) (Rb2CdO2). The powder diffraction pattern of Rb6[CdO4] [a=906.6 (1),c=694.3 (1) pm] and Rb2Cd2O3 [a=642.6 (2),b=679.0 (1),c=667.9 (2) pm, =115.2 (1)] confirm isotypie with K6[CdO4] and K2Cd2O3 respectively.
Herrn Prof. Dr.Gutman zum 65. Geburtstag gewidmet. 相似文献
2.
Syntheses, Crystal Structure, and Properties of the Cage‐like, Hexaacidic P12S12N8(NH)6 · 14 H2O and its Salts Li6[P12S12N14] · 26 H2O, (NH4)6[P12S12N14] · 10 H2O, and K6[P12S12N14] · 8 H2O The cage‐like acid P12S12N8(NH)6 · 14 H2O was obtained by the reaction of KSCN with P4S10 via the formation of K6[P12S12N14] · 8 H2O and subsequent ion exchange reactions in aqueous solution. Starting from the acid the salts Li6[P12S12N14] · 26 H2O and (NH4)6[P12S12N14] · 10 H2O were synthesized. According to X‐ray single‐crystal structure analyses the compounds are built up by isosteric P–N cages [P12S12N[3]8N[2]6]6–. Each of them is made up of twelve P3N3 rings, which exclusively exhibit the boat conformation. The cages have the idealized symmetry 2/m3; P12S12N8(NH)6 · 14 H2O: P1, a = 1119.11(7), b = 1123.61(7), c = 1125.80(6) pm, α = 80.186(4), β = 60.391(4), γ = 60.605(4)°, Z = 1; Li6[P12S12N14] · 26 H2O: Fm3, a = 1797.4(1) pm, Z = 4; (NH4)6[P12S12N14] · 10 H2O: P63, a = 1153.2(1), c = 2035.6(2) pm, Z = 2; K6[P12S12N14] · 8 H2O: R3c, a = 1142.37(5), c = 6009.6(3) pm, Z = 6. In the crystal the cages of the acid are crosslinked via hydrate molecules by hydrogen bonds. The cations in the salts show a high‐mobility and are located between the cages. 相似文献
3.
A new phase has been prepared by methanolothermal reaction of Cs2CO3, BiCl3 and Li3AsSe3 at 130 °C for 36 hours. Cs4BiAs3Se7 ( I ) reveals the first Bi‐selenoarsenate polyanionic chain [Bi(As2Se4)(AsSe3)]4–, consisting of Bi3+ ions in a distorted octahedral environment of [AsSe3]3– and trans‐[As2Se4]4– units. The latter anion consists of a central “As24+” dumb‐bell whereby two Se atoms are attached to each of the As atoms. Structural Data: Space Group P21/n, a = 13.404(4) Å, b = 23.745(8) Å, c = 13.880(4) Å, β = 99.324(6)°, Z = 8. 相似文献
4.
Ernesto Schulz Lang Ramo Marceli Fernandes Jr Clvis Peppe Robert Alan Burrow Ezequiel M. Vzquez‐Lpez 《无机化学与普通化学杂志》2003,629(2):215-218
The reaction of diphenylditelluride with pyridine, 2‐bromopyridine or 2‐bromopyridine/tetraamminedichlorocobalt(III) chloride in 12 M hydrochloric acid afforded the tetrachlorophenyltellurate(IV) compounds [C5NH6][PhTeCl4] ( 1 ), [2‐Br‐C5NH5] [PhTeCl4] ( 2 ), and [{2‐Br‐C5NH5}{Co(NH3)4Cl2}] [PhTeCl4]2 ( 3 ). They were all characterized structurally by single crystal X‐ray diffraction. In all structures, the arrangement about the tellurium atoms is square pyramidal. The [PhTeCl4]— anions in 1 and 2 form trimeric and dimeric units, respectively, through Te···Cl secondary bonding. Compound 3 shows an unusual face‐to‐face packing of the [PhTeCl4]—anions with hydrogen bonding to the bromopyridium cation. 相似文献
5.
Katharina Wiesler Karoline Brandl Andrea Fleischmann Nikolaus Korber Prof. Dr. 《无机化学与普通化学杂志》2009,635(3):508-512
The crystalline isotypic solvates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3 have been synthesized using the direct reduction of elemental tin or tetraphenyltin, respectively, with heavier alkali metals or the dissolution of the binary phase RbPb in liquid ammonia. These compounds contain the cluster ions [Sn4]4– or [Pb4]4– respectively. This is the first time that[Tt4]4– ions (Tt = tetrels) are detected as result of a solution reaction. The accommodation of the ammonia molecules, which build up ion‐dipole interactions to alkali metal cations, requires some modifications of the crystal structures compared to the binary phases RbSn, CsSn, and RbPb. The tetrahedral [Tt4]4– anions have a slightly lower coordination by Rb+ or Cs+ cations and, furthermore, the intercluster distances show a remarkable increase. 相似文献
6.
The reactions of Au(OH)3, M2CO3 (M = Li, Na, Rb), and methanesulfonic acid at elevated temperatures in sealed glass ampoules lead to single crystals of M[Au(CH3SO3)4] (M = Li, Na, Rb). In the crystal structures of Li[Au(CH3SO3)4] (tetragonal, I$\bar{4}$ , Z = 2,a = 938.64(2) pm, c = 917.01(3) pm, V = 807.93(4) Å3) and Rb[Au(CH3SO3)4] (tetragonal, P$\bar{4}$ 21c, Z = 2, a = 946.7(1) pm,c = 889.9(1) pm, V = 797.6(2) Å3) the complex aurate anions are linked by the M+ ions in three dimensions. Contrastingly, in the structure of Na[Au(CH3SO3)4] (triclinic, P$\bar{4}$ , Z = 1, a = 540.04(2) pm,b = 863.75(2) pm, c = 973.29(3) pm, α = 72.694(2)°, β = 75.605(2)°, γ = 77.687(2)°, V = 415.05(2) Å3) the complex anions are connected into layers that are further connected by weak hydrogen bonds. The thermal decomposition of Li[Au(CH3SO3)4] was monitored up to 500 °C and leads in a multi‐step process to elemental gold and Li2SO4. 相似文献
7.
Single crystals of guanylurea (1–carbamoylguanidinium) sulphate hydrate (C 2/c, a = 30.353(6), b = 6.6162(13), c = 21.204(4) Å, β = 99.37(3)°, V = 4201.4(14) Å3, T = 200 K) were obtained from a neutral aqueous solution containing guanylurea sulphate. By analogy with previously reported simple molecular guanylurea salts, the title compound builds up an array of mutually linked chains of cations and anions, with the crystal packing being largely controlled by an extensive hydrogen bonding network. 相似文献
8.
Mg2(PO2NH)4 · 8 H2O ( 1 ), Mn2(PO2NH)4 · 8 H2O ( 2 ), Co2(PO2NH)4 · 8 H2O ( 3 ) and Zn2(PO2NH)4 · 8 H2O ( 4 ) were obtained as microcrystalline powders by combining aqueous solutions of K4(PO2NH)4 · 4 H2O and MX2 · y H2O (M = Mg, Mn, Co, Zn; X = Cl, NO3). Single crystals were obtained by crystallization in gelatine gels in U‐tubes or test‐tubes. 2 and 4 were characterized by thermogravimetry and 4 was additionally characterized by temperature dependend in situ powder diffractometry. The structures of 1 , 2 , 3 and 4 were found to be isotypic and were solved by single‐crystal X‐ray methods: P 21/c, Z = 2 ( 1 : a = 645.4(2), b = 1050.1(2), c = 1283.3(3) pm, β = 104.66(3)°; 2 : a = 648.7(2), b = 1063.1(2), c = 1310.8(3) pm, β = 103.93(3)°; 3 : a = 643.3(2), b = 1049.0(2), c = 1286.7(3) pm, β = 104.28(3)°; 4 : a = 644.18(5), b = 1049.22(7), c = 1282.43(8) pm, β = 104.122(6)°). The structure is composed of MO6 octahedra and (PO2NH)44— anions. The P4N4 rings of the (PO2NH)44— anions exhibit a slightly distorted chair conformation, which is supported by IR data and has been described by torsion angles, Displacement Asymmetry Parameters and Puckering Parameters. Via M2+ ions and hydrogen bonds, the tetrametaphosphimate anions are connected forming layers perpendicular to [100]. These layers are connected by hydrogen bonds. 相似文献
9.
Structures and Thermal Behaviour of Alkali Metal Dihydrogen Phosphate HF Adducts, MH2PO4 · HF (M = K, Rb, Cs), with Hydrogen Bonds of the F–H…O Type Three HF adducts of alkali metal dihydrogen phosphates, MH2PO4 · HF (M = K, Rb, Cs), have been isolated from fluoroacidic solutions of MH2PO4. KH2PO4 · HF crystallizes monoclinic: P21/c, a = 6,459(2), b = 7,572(2), c = 9,457(3) Å, β = 101,35(3)°, V = 453,5(3) Å3, Z = 4. RbH2PO4 · HF and CsH2PO4 · HF are orthorhombic: Pna21, a = 9,055(3), b = 4,635(2), c = 11,908(4) Å, V = 499,8(3) Å3, Z = 4, and Pbca, a = 7,859(3), b = 9,519(4), c = 14,744(5) Å, V = 1102,5(7) Å3, Z = 8, respectively. The crystal structures of MH2PO4 · HF contain M+ cations, H2PO4– anions and neutral HF molecules. The H2PO4– anions are connected to layers by O–H…O hydrogen bonds (2,53–2,63 Å), whereas the HF molecules are attached to the layers via very short hydrogen bonds of the F‐H…O type (2,36–2,38 Å). The thermal decomposition of the adducts proceeds in three steps. The first step corresponds to the release of mainly HF and a smaller quantity of water. In the second and third steps, water evolution caused by condensation of dihydrogen phosphate is the dominating process whereas smaller amounts of HF are also released. 相似文献
10.
Pale blue, lath‐shaped single crystals of K2NdP2S7 (≡ K4Nd2[PS4]2[P2S6]; monoclinic, P21/n, a = 904.76(8), b = 677.38(6), c = 1988.7(2) pm, β = 97.295(5)°, Z = 2) are obtained by the reaction of Nd, S and P2S5 with an excess of KCl as a flux in evacuated silica tubes at 750 °C (7 d) which should produce Nd[PS4] instead. Beside isolated [PS4]3– tetrahedra, the crystal structure contains discrete ethane‐analogous [P2S6]4– (≡ [S3P–PS3]4–) units in staggered conformation with tetravalent phosphorus cations and a P–P distance of 219 pm. The two crystallographically different potassium cations show coordination numbers of nine and ten in the shape of distorted mono‐ and bicapped square antiprisms. Finally, the Nd3+ cations are surrounded by eight sulfur atoms arranged as (uncapped) square antiprisms. The entire structure is dominated by (K1)+ containing {(Nd2[PS4]2[P2S6])4–} layers parallel (101) which are three‐dimensionally interconnected by (K2)+ cations. 相似文献
11.
Qing‐Lun Wang Mao Liang Dai‐Zheng Liao Shi‐Ping Yan Zong‐Hui Jiang Peng Cheng 《无机化学与普通化学杂志》2004,630(4):613-616
A unique neodymium(III) complex, {[Nd(BTC)(H2O)4] · H2O}n (BTC = 1, 3, 5‐benzenetricarboxylate), was obtained from the reaction between Nd(ClO4)3 · xH2O and Na3BTC. Coordination bonds, hydrogen bonds, and π‐π stacking form a supramolecular structure with a novel, two‐dimensional framework. The temperature‐dependent magnetic susceptibilities were analyzed by the Curie‐Weiss law; the following values were found C = 1.32, θ = —18.3 K, respectively. 相似文献
12.
From Infinite Chains according to 1∞[Zr(S2O7)4/2] in Zr(S2O7)2 to the unprecedented [Zr(S2O7)4]4– Anion in Ag4[Zr(S2O7)4] 下载免费PDF全文
The reaction of ZrCl4 with oleum (65 % SO3) in the presence of Ag2SO4 at 250 °C yielded colorless single crystals of Zr(S2O7)2 [orthorhombic, Pccn, Z = 4, a = 709.08(6) pm, b = 1442.2(2) pm, c = 942.23(9) pm, V = 963.5(2) × 106 pm3]. Zr(S2O7)2 shows Zr4+ ions in an eightfold distorted square antiprismatic coordination of oxygen atoms belonging to four chelating disulfate units. Each S2O72– ion is connected to a further Zr4+ ion leading to chains according to 1∞[Zr(S2O7)4/2]. The same reaction at a temperature of 150 °C resulted in the formation of Ag4[Zr(S2O7)4] [monoclinic, C2/c, Z = 4, a = 1829.35(9) pm, b = 704.37(3) pm, c = 1999.1(1) pm, β = 117.844(2)°, V = 2277.6(2) × 106 pm3]. Ag4[Zr(S2O7)4] exhibits the unprecedented [Zr(S2O7)4]4– anion, in which the central Zr4+ cation is coordinated by four chelating disulfate units. Thus, in Ag4[Zr(S2O7)4] the 1∞[[Zr(S2O7)4/2] chains observed in Zr(S2O7)2 are formally cut into pieces by the implementation of Ag+ ions. 相似文献
13.
Lisa Verena Schindler Prof. Dr. Thorsten Klüner Prof. Dr. Mathias S. Wickleder 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(39):13865-13870
The reaction of Na2SO4 and K2SO4 with fuming sulfuric acid (65 % SO3) yielded colorless extremely sensitive crystals of Na[HS3O10] (monoclinic; P21/n (No. 14); Z=4; a=707.36(2), b=1378.56(4), c=848.10(3) pm; β=94.817(1)°; V=824.09(4) ? 106 pm3) and K[HS3O10] (orthorhombic; Pccn (No. 56); Z=4; a=1057.16(3), b=807.81(2), c=897.57(2) pm; V=766.51(3) ? 106 pm3). The analogous rubidium compound Rb[HS3O10] (orthorhombic; Pnma (No. 62); Z=4; a=891.43(3), b=1095.34(4), c=839.37(3) pm; V=819.58(5) ? 106 pm3) originates from the reaction of Rb2CO3 and SO3. All of the different structures contain the hitherto unknown anion [HS3O10]? and are stamped by strong hydrogen bonds linking the anions either to dimers or chains. Theoretical investigations by DFT methods give further insight in the structural characteristics of [HS3O10]?. The preparation of the [HS3O10]? anion can be seen as an important milestone on our way to the still elusive polysulfuric acids. 相似文献
14.
About Selenidostannates. I Synthesis, Structure, and Properties of [Sn2Se6]4–, [Sn4Se10]4–, and [Sn3Se7]2– The selenidostannates [(C4H9)2NH2]4Sn2Se6 · H2O ( I ), [(C4H9)2NH2]4Sn4Se10 · 2 H2O ( II ) und [(C3H7)3NH]2Sn3Se7 ( III ) were prepared by hydrothermal syntheses from the elements and the amines. I crystallizes in the monoclinic spacegroup P21/n (a = 1262.9(3) pm, b = 1851.3(4) pm, c = 2305.2(4) pm, β = 104.13(3)° and Z = 4). The [Sn2Se6]4– anion consists of two edge‐sharing tetrahedra. II crystallizes in the orthorhombic spacegroup Pna21 (a = 2080.3(4) pm, b = 1308.2(3) pm, c = 2263.5(5) pm and Z = 4). The anion is formed from four SnSe4 tetrahedra which are joined by common corners to the adamantane cage [Sn4Se10]4–. III crystallizes in the orthorhombic spacegroup Pbcn (a = 1371.1(3) pm, b = 2285.4(5) pm, c = 2194.7(4) pm and Z = 8). The anion is a chain, built from edge‐sharing [Sn3Se5Se4/2]2– units, in which two corner sharing tetrahedra are connected to a trigonal bipyramid by an edge of one and a corner of the other tetrahedron. The results of the TG/DSC measurements and of temperature dependent X‐ray diffractograms reveal that I and II decompose at first by release of minor quantities of triethylammonium to compounds with layer structure and larger cell dimensions. At still higher temperature the rest of triethylammonium and H2Se is evolved, leaving SnSe2 and Se in the bulk. The former decomposes partially at the highest temperature to SnSe. In the measurements of III the complex intermediate compound was not observed. III decomposes directly to SnSe2. 相似文献
15.
S. A. Gromilov I. A. Baidina S. P. Khranenko V. I. Alekseev A. V. Belyaev 《Journal of Structural Chemistry》2003,44(1):74-81
An integrated Xray diffraction study was performed on polycrystals and single crystals of three new isostructural phases with general formula Ag4A2[M(NO2)4]3 (M = Pd, Pt; A = K, Rb). Data on the crystal structure solution (CAD4 diffractometer, MoK
radiation, graphite monochromator = 2–30° are presented. In one crystallographically independent [M(NO2)4]2- complex anion, the planar square coordination of the central atom is completed to 4 + 2 by two oxygen atoms at a distance of 3.02–3.12 in the other anion, it is completed to 4 + 1 + 1 by an oxygen atom at a distance of 3.12–3.30 and an Ag+ cation at a distance of 3.04–3.11 . Part of the Ag+ cations form Ag - Ag dimers with a distance of 3.03–3.07. Crystalchemical analysis of known structures containing [Pd(NO2)4]2- complex anions was performed. It has been established that in none of the cases do any of the possible limiting configurations occur. 相似文献
16.
The reinvestigation of the pseudo‐binary systems MBr–BiBr3 (M = Rb, Cs) revealed two new phases with composition MBi2Br7. Both compounds are hygroscopic and show brilliant yellow color. The crystal structures were solved from X‐ray single crystal diffraction data. The isostructural compounds adopt a new structure type in the triclinic space group P$\bar{1}$ . The lattice parameters are a = 755.68(3) pm, b = 952.56(3) pm, c = 1044.00(4) pm, α = 76.400(2)°, β = 84.590(2)°, γ = 76.652(2)° for RbBi2Br7 and a = 758.71(5) pm, b = 958.23(7) pm, c = 1060.24(7) pm, α = 76.194(3)°, β = 83.844(4)°, γ = 76.338(3)° for CsBi2Br7. The crystal structures consist of M+ cations in anticuboctahedral coordination by bromide ions and bromidobismuthate(III) layers 2∞[Bi2Br7]–. The 2D layers comprise pairs of BiBr6 octahedra sharing a common edge. The Bi2Br10 double octahedra are further connected by common vertices. The bismuth(III) atoms increase their mutual distance in the double octahedra by off‐centering so that the BiBr6 octahedra are distorted. The CsBi2Br7 type can be interpreted as a common hexagonal close sphere packing of M and Br atoms, in which 1/4 of the octahedral voids are filled by Bi atoms. The structure type was systematically analyzed and compared with alternative types of common packings. The existence of a compound with the suggested composition CsBiBr4 could not be verified experimentally. 相似文献
17.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C. 相似文献
18.
Zintl-Compounds with Gold: M3AuSn4 with M = K, Rb, Cs and M3AuPb4 with M = Rb, Cs Silver coloured, brittle single crystals of the compounds M3AuSn4 with M = K, Rb, Cs and M3AuPb4 with M = Rb, Cs were synthesized by reactions of alkali metal azides (MN3) with gold sponge and tin (lead) powder at T = 923 K. The structures of the isotypic compounds (space group Pmmn, Z = 2) were determined from X-ray single-crystal diffractometry data (see ‘‘Inhaltsübersicht”︁”︁). The Zintl-compounds M3AuE(14)4 with E(14) = Sn, Pb contain [AuE(14)4]-chains with P4-analogous E(14)4-tetrahedra which are connected by μ2-bridging gold atoms. 相似文献
19.
Supramolecular aspects on Te(OH)6 as substitute for crystal‐water in adenine hydrate complexes and the first disodium ditellurate(VI) are reported. The co‐crystallate [Te(OH)6 · 2 adenine · 4 H2O] ( 1 ) has been prepared in 41% yield from the 1 : 1 mixing of Te(OH)6 with the nitrogenous base adenine. The adduct of infinite stacks of adenine molecules, Te(OH)6 and water not only proves that Te(OH)6 mimicks the role of water in the related hydrate adenine · 3 H2O but also shows that the inclusion of Te(OH)6 raises the number of HO–H and N–HO contacts and therefore increases the distance between the adenine rings to 3.31 Å in 1 in comparison to that in adenine trihydrate (3.22 Å). Additionally, the disodium ditellurate(VI) aggregate {[Te2(O)2(OH)6(ONa)2]2 [NaOH · 12.5 H2O]} ( 2 ) resulted from the reaction of 1 with 2 molar equivalents of aqueous NaOH. Dinuclear 2 represents the first X‐ray diffraction characterized example of a sodium tellurate(VI) constructed from [Te2O4(OH)6]2– dianions. 相似文献
20.
Angela Mller 《无机化学与普通化学杂志》2001,627(11):2537-2541
The Mixed‐Valent Oxoferrate(II,III) K3[Fe2O4] – A Stuffed Variant of the K2[Fe2O4] Type of Structure K3[Fe2O4] has been obtained by tempering “Cs3K3CdO4” in sealed Fe containers (36 d at 450–480 °C) as dark red transparent single crystals of rectangular shape. The structure determination (IPDS diffractometer data, MoKα, 1891 collected reflections, 234 symmetry independent, R1 = 0.033, wR2 = 0.088) confirms the space group Fddd; a = 596.11(9), b = 1140.3(1), c = 1717.9(3) pm; Z = 8. K3[Fe2O4] exhibits a structure with [FeO4] tetrahedra connected via corners leading to a three‐dimensional network closely related to the KFeO2 type of structure. From the oxidation at 520 °C of iron metal with KO2 in the presence of Na2O black single crystal of K2[Fe2O4] have been obtained. K2[Fe2O4] crystallizes in the space group Pbca with Z = 8 and a = 559.18(7), b = 1122.1(1), c = 1592.8(2) pm (IPDS diffractometer data, MoKα, collected refelctions: 9543, 1213 symmetry independent, R1 = 0.043, wR2 = 0.102). 相似文献