首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three new homodinuclear lanthanide(III) complexes [Ln2(L)6(2,2′‐bipy)2] [Ln = TbIII ( 1 ), SmIII ( 2 ), EuIII ( 3 ); HL = 3‐hydroxycinnamic acid (3‐HCA); 2,2′‐bipy = 2,2′‐bipyridine] were synthesized and characterized by IR spectroscopy, elemental analyses, and X‐ray diffraction techniques. Complexes 1 – 3 crystallize in triclinic system, space group P$\bar{1}$ . In all complexes the lanthanide ions are nine‐coordinate by two nitrogen atoms from the 2,2′‐bipy ligand and seven oxygen atoms from one chelating L ligands and four bridging L ligands, forming distorted tricapped trigonal prismatic arrangements. The lanthanide(III) ions are intramolecularly bridged by eight carboxylate oxygen atoms forming dimeric complexes with Ln ··· Ln distances of 3.92747(15), 3.9664(6), and 3.9415(4) Å for complexes 1 – 3 , respectively. The luminescent properties in the solid state of HL ligand and EuIII complex are also discussed.  相似文献   

2.
Two N'-(2-hydroxybenzylidene)pyridine N-oxide-carbohydrazide (H3L)-based coordination complexes with the formula [Ln2(DMF)2(OAc)2(HL)2]n (Ln = Dy for 1 and Eu for 2 ) were solvothermally synthesized. Crystal structures, thermal stabilities, magnetic and luminescent properties of the two complexes were fully investigated. Both complexes are isomorphic two-dimensional layers with centrosymmetric {Ln2} subunits extended by doubly deprotonated HL2– connectors. Complex 1 with highly anisotropic DyIII spin exhibits slightly frequency-dependent magnetic relaxations under zero dc field with an effective energy barrier of ca. 6.84 K. EuIII-based complex 2 displays only one weak fluorescent emission around 532 nm with the absence of characteristic emission of EuIII ion. These results provide helpful hints of the hydrazide Schiff-functionalized organic ligands on the function modulations of the resulting Ln complexes.  相似文献   

3.
Three dinuclear lanthanide complexes [Ln2(H2L)2(NO3)4] [Ln = Dy ( 1 ), Tb ( 2 ), and Gd ( 3 )] [H3L = 2‐hydroxyimino‐N′‐[(2‐hydroxy‐3‐methoxyphenyl)methylidene]‐propanohydrazone] were solvothermally synthesized by varying differently anisotropic rare earth ions. Single‐crystal structural analyses demonstrate that all the three complexes are crystallographically isostructural with two centrosymmetric LnIII ions aggregated by a pair of monodeprotonated H2L anions. Weak intramolecular antiferromagnetic interactions with different strength were mediated by a pair of phenoxo bridges due to superexchange and/or single‐ion anisotropy. Additionally, the DyIII‐based entity shows the strongest anisotropy exhibits field‐induced single‐molecule magnetic behavior with two thermally activated relaxation processes. In contrast, 3 with isotropic GdIII ion has a significant cryogenic magnetocaloric effect with the maximum entropy change of 25.7 J · kg–1 · K–1 at 2.0 K and 70.0 kOe.  相似文献   

4.
The reactions of Ln(NO3)3 · 6H2O and 4‐acetamidobenzoic acid (Haba) with 4,4′‐bipyridine (4,4′‐bpy) in ethanol solution resulted in three new lanthanide coordination polymers, namely {[Ln(aba)3(H2O)2] · 0.5(4,4′‐bpy) · 2H2O} [Ln = Sm ( 1 ), Gd ( 2 ), and Er ( 3 ), aba = 4‐acetamidobenzoate]. Compounds 1 – 3 are isomorphous and have one‐dimensional chains bridged by four aba anions. 4,4′‐Bipyridine molecules don’t take part in the coordination with LnIII ions and occur in the lattice as guest molecules. Moreover, the adjacent 1D chains in the complex are further linked through numerous N–H ··· O and O–H ··· O hydrogen bonds to form a 3D supramolecular network. In addition, complex 1 in the solid state shows characteristic emission in the visible region at room temperature.  相似文献   

5.
Seven lanthanide complexes [Ln(OPPh3)3(NO3)3] ( 1 – 3 ) (OPPh3 = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh3)4(NO3)2](NO3) ( 4 ), [Ln(OPPh3)3(NO3)3]2 ( 5 – 7 ) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh3 ligand in the air. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1 – 4 are mononuclear complexes formed by OPPh3 ligands and nitrates. The asymmetric units of complexes 5 – 7 consist of two crystallographic‐separate molecules. Complex 1 is self‐assembled to construct a 2D layer‐structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain‐like structure that was assembled by OPPh3 ligands and nitrate ions through C–H ··· O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb3+ (λem = 480, 574 nm) and Eu3+ (λem = 552, 593, 619, 668 nm).  相似文献   

6.
The salen‐type ligand H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine] was utilized for the synthesis of two lanthanide(III) coordination polymers [LnH2L(NO3)3MeOH]n [Ln = Eu ( 1 ) and Ln = Lu ( 2 )]. The single‐crystal X‐ray diffraction analyses of 1 and 2 revealed that they are isomorphous and exhibit one‐dimension neutral structure, in which H2L effectively functions as a bridging ligand and give rise to a chain‐like polymer. The luminescent properties of polymers in solid state and in solution were investigated and 1 exhibits typical red luminescence of EuIII ions in solid state and dichloromethane solution and 2 emits the ligand‐centered blue luminescence. The energy transfer mechanisms in these luminescent lanthanide polymers were described through calculation of the lowest triplet level of ligand H2L.  相似文献   

7.
Six lanthanide complexes [Ln(pmc)2NO3]n [Hpmc = pyrimidine‐2‐carboxylic acid, Ln = La ( 1 ), Pr ( 2 )], [Ln(pmc)2(H2O)3]NO3 · H2O [Ln = Eu ( 3 ), Tb ( 4 ) Dy ( 5 ), Er ( 6 )] were synthesized by the reactions of lanthanide nitrate and pyrimidine‐2‐carboxylic acid in water at room temperature. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR, circular dichroism (CD) and fluorescence spectra. Structure analysis shows that complexes 1 and 2 are isostructural with P43212 space group, whereas isostructural complexes 3 – 6 belong to the P21/c space group. In complexes 1 and 2 , the central metal atoms are coordinated by nitrates and pmc, which are self‐assembled to construct a 3D porous network with 62.62.62.62.62.62 (66) topology. In complexes 3 – 6 , H2O and pmc ligands are coordinated and the complexes exhibit a one‐dimensional zigzag chain, which is further expanded into a 3D structure by hydrogen bonding. In addition, the circular dichroism of 1 and 2 proves that the two complexes are both chiral with achiral ligand of Hpmc. Luminescent measurements of compounds 3 – 5 indicate that the characteristic fluorescence of Eu3+, Tb3+, and Dy3+ are observed.  相似文献   

8.
Investigating the coordination chemistry of H2CDA (4‐oxo‐1,4‐dihydro‐2,6‐pyridinedicarboxylic acid) with rare earth salts Ln(NO3)3 under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H2CDA charged to its position isomer, enol type structure, H3CAM (4‐hydroxypyridine‐2,6‐dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H2O)3]n [Ln = La ( 1 ), Pr, ( 2 )] and {[Ln(CAM)(H2O)3] · H2O}n [Ln = Nd, ( 3 ), Sm, ( 4 ), Eu, ( 5 ), Y, ( 6 )] were synthesized and characterized. The X‐ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3 – 6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C2/c space group, whereas 3 – 6 crystallize in the monoclinic system with space group P21/n. In the two kinds of structures, H3CAM displays two different coordination modes. The SmIII and EuIII complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm.  相似文献   

9.
Five new 4,5‐dichlorophthalate (dcpa)‐extended lanthanide coordination polymers (CPs) with formulas [Ln2(H2O)(dcpa)3]n (Ln = Tb for 1 , Sm for 2 , Pr for 3 , and Nd for 4 ) and [Yb(H2O)2(dcpa)(Hdcpa)]n ( 5 ) were solvothermally synthesized. Structural determinations demonstrate that CPs 1 – 4 are crystallographically isostructural, exhibiting an infinite two‐dimensional layer with dimeric {Ln2(COO)3} subunits extended by aromatic skeleton of fully deprotonated dcpa2– connectors. In contrast, complex 5 features a one‐dimensional broad ribbon with centrosymmetric {Yb2(COO)2} subunits propagated by pairs of ditopic dcpa2– ligands. Interestingly, the anionic dcpa2– connector can serve as a good antenna ligand to sensitize the characteristic emissions of the different LnIII ions in both the ultraviolet (for 1 – 3 ) and near‐infrared (for 4 and 5 ) regions.  相似文献   

10.
Solvothermal combination of trivalent lanthanide metal precursors with 1, 2, 4, 5‐cyclohexanetetracarboxylic acid (L) ligand has afforded the preparation of a family of eight new coordination polymers [Ln4(L)3(H2O)10] · 7H2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) ( 1 – 8 ). Structural analyses reveal that the 1, 2, 4, 5‐cyclohexanetetracarboxylic acid ligand with e,a,a,e (LI) conformation displays a μ4‐(κ3O, O, O5)(κ2O2,O2)(κ2O4,O4)‐bridging mode to generate 3D frameworks of complexes 1 – 8 and the α‐Po topology with the short Schläfli symbol {412.63} could be observed in complexes 1 – 8 . The near‐infrared luminescence properties were studied, and the results have shown that the HoIII, ErIII, and YbIII complexes emit typical near‐infrared luminescence in the solid‐state. Variable‐temperature magnetic susceptibility measurements of complexes 2 – 7 have shown that complex 2 (Gd) shows the ferromagnetic coupling between magnetic centers, whereas the complexes 3 – 7 show the antiferromagnetic coupling between magnetic centers. Additionally, the thermogravimetric analyses were discussed.  相似文献   

11.
Three inorganic‐organic hybrid frameworks [Mn(HIMDC)(4,4′‐bipyo)0.5(H2O)]n (1) , [Cd(H2IMDC)2(2,2′‐bipyo)] (2) and [Ca(HIMDC)(H2O)2·H2O]n (3) (H3IMDC = 4,5‐imidazoledicarboxylate; 4,4′‐bipyo = 4,4′‐bipyridine‐N,N′‐dioxide; 2,2′‐bipyo= 2,2′‐bipyridine‐N,N′‐dioxide) have been hydrothermally synthesized and characterized by the elemental analyses, IR spectra, TG analysis and the single crystal diffraction. Both compounds 1 and 3 exhibit 2D layers while 2 is a monomer. It is noteworthy that compound 2 exhibits strong fluorescent emission in the solid state at room temperature.  相似文献   

12.
Three three‐dimensional (3D) heterometallic lanthanide‐transition‐metal (hetero‐Ln‐TM) compounds with the formula [Ln6(Cu4Br3)(Cu2Br2)2(Cu2Br)(IN)20(H2O)12] · 2H2O [Ln = Gd ( 1 ), Ln = Sm ( 2 ), Ln = Eu ( 3 )] based on the linkages of one‐dimensional Ln organic chain and CumBrn units were synthesized by mixing Ln2O3 with isonicotinic acid (HIN = pyridine‐4‐carboxylic acid) under hydrothermal condition. During the synthesis, two ligands were used: the isonicotinate (IN) stabilizes the cluster and links the one‐dimensional Ln organic chains and CumBrn motif, whereas Br anions play a very important role in the formation of the distinct CumBrn units. It is interesting that there are three different Cu‐Br motifs: a closed four‐membered ring [Cu2Br2] subunit, a linear [Cu2Br] subunit, an S‐sharp [Cu4Br3] subunit. Strong fluorescence of compounds 2 and 3 suggests an efficient energy transfer from the ligand to Eu3+ ions. The luminescent investigation indicates that 2 and 3 are excellent candidates for fluorescent materials.  相似文献   

13.
To explore the coordination possibilities of fluorene‐based ligands, two manganese(II) complexes with the ligand 9,9‐dibutyl‐9H‐fluorene‐2,7‐carboxylate ( L ) were synthesized and characterized: [Mn2( L )2(DMF)3] ( 1 ) and [Mn2( L )2(DMF)] ( 2 ). X‐ray single‐crystal diffraction analyses show that complex 1 has a two‐dimensional (2D) (4,4) structure, whereas complex 2 consits of a three‐dimensional (3D) (4,5)‐connected topology framework. The results indicate that the steric bulk of the fluorene ring in H2 L plays an important role in the formations of 1 and 2 . Additional pyridine‐based ligands govern the formation of the final frameworks of 2 . Moreover, the luminescent properties of these complexes were briefly investigated.  相似文献   

14.
trans‐[Ln(NO3)2(Ph3AsO)4](NO3)2 ( 1 ) and mer‐[Ln(NO3)3(Ph3AsO)3] ( 2 ) complexes were prepared from Ln(NO3)3 · xH2O and Ph3AsO in chloroform (Ln = Y, Sm, Eu, Tb, and Dy). Production of complexes 1 vs. 2 and solvent content was found to be highly dependent on crystallization solvent choice. Tb and Eu produced only 1 , while the other Ln metals produced both 1 and 2 . Solvent‐free, acetone‐, and methanol‐containing polymorph series were identified for complexes 1 . Acetone/ether‐ and CH2Cl2‐containing polymorph series were identified for complexes 2 . Luminescence measurements were performed on solvent‐free 1 (Ln = Y, Eu, Tb, and Dy) and 2 (Ln = Sm) at 78 K. Sensitized lanthanide emission bands via resonance energy transfer were observed in all cases, except the control (Ln = Y). The efficiency of this energy transfer process varies amongst the lanthanide metals studied and was rationalized using Latva's empirical rule and Density Functional Theory calculations.  相似文献   

15.
A series of mer‐[Ln(NO3)3(Ph3PO)3] complexes were prepared from Ln(NO3)3 · xH2O and Ph3PO in chloroform (Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, and Er). The La and Nd complexes were 0.25 CHCl3 solvates, whereas the others were solvent‐free. The identical reaction using Yb(NO3)3 · xH2O produced the unique salt trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] · Et2O. All nitrate ions in all complexes are η2‐chelating. A comparison of the various [Ln(NO3)3(Ph3PO)3] structures, including those in the literature, reveals at least four common polymorphs, each of which is represented by isomorphic structures of multiple Ln ions. Luminescence of mer‐[Ln(NO3)3(Ph3PO)3] (Ln = Y, La, Nd, Sm, Eu, Gd, Tb, and Dy), trans‐[Yb(NO3)2(Ph3PO)4][Yb(NO3)4(Ph3PO)] and Ph3PO assignments are reported. Latva's empirical rule allows for the antenna effect, in which energy is transferred from the triplet state of the Ph3PO ligand, to occur only for Tb3+. Excitation via Ph3PO results in strong green luminescence for Tb3+ having twice the intensity as that which results from direct excitation of the f‐f transitions.  相似文献   

16.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

17.
To explore the coordination possibilities of anthracene‐based ligands, three cadmium(ιι) complexes with anthracene‐9‐carboxylate ( L ) and relevant auxiliary chelating or bridging ligands were synthesized and characterized: Cd2( L )4(2bpy)2(μ‐H2O) ( 1 ), Cd2( L )4(phen)2(μ‐H2O) ( 2 ), and {[Cd3( L )6(4bpy)]} ( 3 ) (2bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, and 4bpy = 4,4′‐bipyridine). Structural analyses show that complexes 1 and 2 both take dinuclear structures by incorporating the chelating 2bpy or phen ligand, which are further interlinked by intermolecular hydrogen‐bonding, π ··· π stacking, and/or C–H ··· π supramolecular interactions to generate higher‐dimensional supramolecular frameworks. Complex 3 has a one‐dimensional (1D) ribbon‐like structure, which is further assembled into a two‐dimensional (2D) layer, and a three‐dimensional (3D) framework by the co‐effects of interchain C–H ··· O hydrogen‐bonding and C–H ··· π supramolecular interactions. Moreover, the luminescent properties of these complexes were further investigated in detail.  相似文献   

18.
The lanthanide coordination complexes Er(2,3‐DMOBA)3(terpy)(H2O) ( 1 ) and [Nd(2,3‐DMOBA)3(terpy)(H2O)]2 ( 2 ) (2,3‐DMOBA = 2,3‐dimethoxybenzoate; terpy = 2,2′:6′,2′′‐terpyridine) were synthesized and characterized by IR spectroscopy, powder X‐ray diffraction (XRD), single‐crystal X‐ray diffraction, and thermogravimetric analysis. Complex 1 crystallizes in the triclinic system, space group P1, and the mononuclear subunits form a 1D chain structure along the a axis by hydrogen bonds. Complex 2 crystallizes in the monoclinic system, space group P21/c, and the dinuclear subunits are further linked via the offset face‐to‐face π ··· π weak stacking interactions to form a supramolecular 2D layered structure. Thermal analysis showed that the complexes have three decomposition steps. The first step is the loss of coordination water molecules. The neutral terpy ligands and partial 2,3‐DMOBA ligands are lost in the second step. The remaining 2,3‐DMOBA ligands are lost in the third step. The 3D stacked plots for the FT‐IR spectra of the evolved gases are recorded and the gaseous products are identified by the typical IR spectra obtained at different temperatures from the 3D stacked plots. Meanwhile, the results of the antibacterial action tests show that 1 and 2 have better antibacterial activities to Candida albicans than to Escherichia coli or Staphylococcus aureus. In addition, complex 2 has better antibacterial action to Candida albicans than complex 1 .  相似文献   

19.
Four salen‐type lanthanide(III) coordination polymers [LnH2L(NO3)3(MeOH)x]n [Ln = La ( 1 ), Ce ( 2 ), Sm ( 3 ), Gd ( 4 )] were prepared by reaction of Ln(NO3)3 · 6H2O with H2L [H2L = N,N′‐bis(salicylidene)‐1,2‐cyclohexanediamine]. Single‐crystal X‐ray diffraction analysis revealed that H2L effectively functions as a bridging ligand forming a series of 1D chain‐like polymers. The solid‐state fluorescence spectra of polymers 1 and 2 emit single ligand‐centered green fluorescence, whereas 3 exhibits typical red fluorescence of SmIII ions. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of GdIII complex 4 . The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

20.
The syntheses and crystal structures of eight lanthanide complexes with formula [Ln(2,5‐DCB)x(phen)y] are reported, which are characterized via single‐crystal, powder X‐ray diffraction, elemental analysis, IR spectroscopy, thermogravimetric analysis, photoluminescence measurement, and DC/AC magnetic measurement. These eight complexes are isostructural, and possess a discrete dinuclear structure. The adjacent dinuclear molecules are linked by the hydrogen bonding interactions into a one‐dimensional (1D) supramolecular chain. The neighboring 1D chains are further extended into a two‐dimensional (2D) supramolecular layer by the π–π stacking interactions. The photoluminescent properties of complexes 1 (NdIII), 2 (SmIII), 3 (EuIII), 5 (TbIII), 6 (DyIII), and 8 (YbIII) were investigated. Magnetic investigations also reveal the presence of ferromagnetic interactions in complexes 4 (GdIII), 6 (DyIII), and 7 (ErIII). Additionally, complex 6 (DyIII) demonstrates field‐induced slow magnetic relaxation behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号