共查询到20条相似文献,搜索用时 15 毫秒
1.
The transparent dark orange compounds Cs2[Pd(N3)4] and Rb2[Pd(N3)4]·2/3H2O are synthesized by reaction of the respective binary alkali metal azides with K2PdCl4 in aqueous solutions. According to single‐crystal X‐ray diffraction investigations, the novel ternary azidopalladates(II) crystallize in the monoclinic space group P21/c (no. 14) with a = 705.7(2) pm, b = 717.3(2) pm, c = 1125.2(5) pm, β = 104.58(2)°, mP30 for Cs2[Pd(N3)4] and a = 1041.4(1) pm, b = 1292.9(2) pm, c = 1198.7(1) pm, β = 91.93(1)°, mP102 for Rb2[Pd(N3)4]·2/3H2O, respectively. Predominant structural features of both compounds are discrete [PdII(N3)4]2– anions with palladium in a planar coordination by nitrogen, but differing in point group symmetries., The vibrational spectra of the compounds are analyzed based on the idealized point group C4h of the spectroscopically relevant unit, [Pd(N3)4]2– taking into account the site symmetry splitting due to the symmetry reduction in the solid phase. 相似文献
2.
By the reaction of AuI with alkali metal hydrogen acetylides MIC2H (MI = Li–Cs) in liquid ammonia and subsequent heating of the remaining residue in refluxing pyridine (MI = Li, Na, K) or as a solid phase at about 110 °C in vacuum (MI = Rb, Cs) ternary alkali metal gold acetylides MIAuC2 were obtained. Their crystal structures were investigated by the means of X‐ray powder diffraction. [Au(C2)2/2–] chains are the characteristic structural motif which are packed in a hexagonal (LiAgC2) and tetragonal arrangement (NaAuC2–CsAuC2), respectively. Simple calculations based on the close packing of rods and spheres can explain these different arrangements. The existence of C–C triple bonds in the title compounds is confirmed by Raman spectroscopic investigations. 相似文献
3.
Several rare‐earth cyclotriphosphate hydrates were obtained from mixtures of sodium cyclotriphosphates and the respective rare‐earth chlorides. Nd(P3O9) · 3H2O [P$\bar{6}$ , Z = 3, a = 677.90(9), c = 608.67(9) pm, R1 = 0.016, wR2 = 0.038, 312 data, 36 parameters] was obtained by a solid state reaction and is isotypic with respective rare‐earth phosphate hydrates, while all the others adopt new structure types. Nd(P3O9) · 4.5H2O [C2/c, Z = 8, a = 1644.6(3), b = 756.11(15), c = 1856.1(4) pm, β = 97.25(3)°, R1 = 0.032, wR2 = 0.081, 1763 data, 194 parameters], Nd(P3O9) · 5H2O [P21/c, Z = 4, a = 773.75(15), b = 1149.1(2), c = 1394.9(3) pm, β = 106.07(3)°, R1 = 0.042, wR2 = 0.082, 1338 data, 194 parameters], Pr(P3O9) · 5H2O [P$\bar{1}$ , Z = 2, a = 745.64(15), b = 889.07(18), c = 934.55(19) pm, α = 79.00(3), β = 80.25(3), γ = 66.48(3), R1 = 0.059, wR2 = 0.089, 1468 data, 193 parameters], Na3Nd(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1059.78(18), b = 1207.25(15), c = 1645.7(4) pm, β = 99.742(17), R1 = 0.047, wR2 = 0.119, 1109 data, 351 parameters] and Na3Pr(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1061.42(16), b = 1209.0(2), c = 1635.5(3) pm, β = 99.841(13), R1 = 0.035, wR2 = 0.062, 1323 data, 350 parameters] were obtained by careful crystallization at room temperature. A thorough structure discussion is given. The infrared spectrum of Nd(P3O9) · 4.5H2O is also reported. 相似文献
4.
Michael Gorol Nadia C. Msch‐Zanetti Mathias Noltemeyer Herbert W. Roesky 《无机化学与普通化学杂志》2000,626(11):2318-2324
Reaction of [M(NH3)6]Cl3 (M = Co, Rh, Ir) and [Ir(NH3)5(OH2)]Cl3 with (NH4)2C2O4 · H2O in aqueous solution resulted in the isolation of [M(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively. The complexes have been characterized by X‐ray crystallography, IR and UV/VIS spectroscopy. The isomorphous compounds crystallize in the orthorhombic space group Pnnm (No. 58). Four molecules of crystal water are involved in an extended three‐dimensional hydrogen bonding network. The librational modes of the lattice water around 600 cm–1 allow the characterization of [Ir(NH3)6]2(C2O4)3 · 4 H2O and [Ir(NH3)5(OH2)]2(C2O4)3 · 4 H2O, respectively, by IR spectroscopy. The band around 600 cm–1 shows a significant frequency shift in the IR spectra of the hexaammine and aquapentaammine complex of iridium(III) and, by that, a distinction is possible. 相似文献
5.
Two Hexagonal Series of Lanthanoid(III) Oxide Fluoride Selenides: M6O2F8Se3 (M = La – Nd) and M2OF2Se (M = Nd,Sm, Gd – Ho) 下载免费PDF全文
Dirk D. Zimmermann Hagen Grossholz Sarah Wolf Oliver Janka Alexander C. Müller Thomas Schleid 《无机化学与普通化学杂志》2015,641(11):1926-1933
Two hexagonal series of lanthanoid(III) oxide fluoride selenides with similar structure types can be obtained by the reaction of the components MF3, M2O3, M, and Se in sealed niobium tubes at 850 °C using CsI as fluxing agent. The compounds with the lighter and larger representatives (M = La – Nd) occur with the formula M6O2F8Se3, whereas with the heavier and smaller ones (M = Nd, Sm, Gd – Ho) their composition is M2OF2Se. For both systems single‐crystal determinations were used in all cases. The compounds crystallize in the hexagonal crystal system (space group: P63/m) with lattice parameters of a = 1394–1331 pm and c = 403–372 pm (Z = 2 for M6O2F8Se3 and Z = 6 for M2OF2Se). The (M1)3+ cations show different square antiprismatic coordination spheres with or without an extra capping fluoride anion. All (M2)3+ cations exhibit a ninefold coordination environment shaped as tricapped trigonal prism. In both structure types the Se2– anions are sixfold coordinated as trigonal prisms of M3+ cations, being first condensed by edges to generate trimeric units and then via faces to form strands running along [001]. The light anions reside either in threefold triangular or in fourfold tetrahedral cationic coordination. For charge compensation, both structures have to contain a certain amount of oxide besides fluoride anions. Since F– and O2– can not be distinguished by X‐ray diffraction, bond‐valence calculations were used to address the problem of their adjunction to the available crystallographic sites. 相似文献
6.
The crystal structure of [Lu(HOCH2COO)2(H2O)4][Lu(HOCH2COO)4] ( 1 ) and Dy2(OCH2COO)2(HOCH2COO)2 · 4H2O ( 2) were determined by X‐ray crystallography. The space group of 1 and 2 are P2/c and P21/c, respectively. In 1 , discrete anions and cations held together by hydrogen bonds form the lattice, while the structure of 2 is a 3‐D network of cross‐linked metal‐ligand chains. The lanthanides are eight‐coordinated by chelating glycolate ligands and water molecules with distorted dodecahedral coordination. The core of 2 is a centrosymmetric dimer complex formed by two dysprosium atoms bridged by two oxygen atoms from deprotonated hydroxyl groups of glycolate ligands. The vibration spectra of the crystals were also measured and compared to each other. 相似文献
7.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C. 相似文献
8.
Alkaline Metal Oxoantimonates: Synthesis, Crystal Structures, and Vibrational Spectroscopy of ASbO2 (A = K, Rb), A4Sb2O5 (A = K, Rb, Cs), and Cs3SbO4 The compounds ASbO2 (A = K/Rb; monoclinic, C2/c, a = 785.4(3)/799.6(1) pm, b = 822.1(4)/886.32(7) pm, c = 558.7(3)/559.32(5) pm, β = 124.9(1)/123.37(6)°, Z = 4) are isotypic with CsSbO2 and the corresponding bismutates. The structures of the antimonates A4Sb2O5 (A = K/Rb: orthorhombic, Cmcm, a = 394.9(1)/407.34(7) pm, b = 1807.4(1)/1893.5(1) pm, c = 636.34(9)/655.60(8) pm, Z = 2) and Cs4Sb2O5 (monoclinic, Cm, a = 1059.81(7) pm, b = 692.68(8) pm, c = 811.5(1) pm, β = 98.7(1)°, Z = 2) both contain the anion [O2SbOSbO2]4–. Cs3SbO4 (orthorhombic, Pnma, a = 1296.1(1) pm, b = 919.24(8) pm, c = 679.95(6) pm, Z = 4) crystallizes with the K3NO4 structure type. 相似文献
9.
Torsten Küppers Martin Köckerling Prof. Dr. Helge Willner Prof. Dr. 《无机化学与普通化学杂志》2007,633(2):280-284
The new tetracyanoborate K[B(CN)4]·CH3CN was synthesized by dissolution of the solvent‐free K[B(CN)4] in acetonitrile and subsequent careful crystallization. The crystal structure has been determined by single‐crystal X‐ray diffraction. It crystallizes in the orthorhombic space group P212121 with Z = 4. Some comparisons with related structures are made, and the vibrational spectrum is discussed. 相似文献
10.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 By treatment of (n‐Bu4N)2[Ru(NO)I5] with (n‐Bu4N)Cl in dichloromethane (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] is formed. The X‐Ray structure determination on a single crystal of (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 (monoclinic, space group I 2/a, a = 20.446(6), b = 11.482(8), c = 27.225(3) Å, β = 107.51(4)°, Z = 4) reveals a dinuclear iodine bridged structure, in which the chlorine atoms are trans positioned to the nitrosyl groups. The low temperature IR and Raman spectra have been recorded of (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 14.08, fd(RuN) = 5.58, fd(RuCl) = 1.52, fd(RuIt) = 0.90 and fd(RuIb) = 0.76 mdyn/Å. 相似文献
11.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se). 相似文献
12.
13.
[Et2Sn(O2AsMe2)2] ( 1 ) and [Ph2Sn(O2AsMe2)(μ‐OMe)]2 ( 2 ) were synthesized by treatment of Et2SnO and Ph2SnS with HO2AsMe2 in Methanol, respectively. The compounds were characterized by elemental analyses, vibrational spectroscopy and mass spectrometry. According to X‐ray diffraction measurements compound 1 crystallizes monoclinic in space group P21/n with cell parameters a = 804.89(3), b = 987.11(5), c = 966.42(4) pm, β = 113.354(3)°. The unit cell parameters of 2 , which crystallizes in the same space group, are a = 974.4(1), b = 1463.3(1), c = 1228.9(1) pm, β = 111.324(3)°. The (SnOAsO)4 rings of 1 are linked and form a two‐dimensional network with the SnEt groups pointing into the holes of the next layer. Compound 2 occurs as a dimer with internal Sn(OMe)2Sn bridges in the (SnOAsO)2 rings. The vibrational and mass spectra are given and discussed. 相似文献
14.
Ibrahim Abdel Ahmed Roger Blachnik Hans Reuter Henning Eickmeier Dietrich Schultze Wolfgang Brockner 《无机化学与普通化学杂志》2001,627(6):1365-1370
[Ph4P]2[Bi2Br8(CH3COCH3)2] ( 1 ) was obtained by the reaction of [Ph4P]Br and BiBr3 in acetone. Single crystals were grown by allowing a layer of n‐hexane to diffuse into the acetonic solution of 1 . The crystal structure was determined by means of X‐ray diffraction. 1 crystallises with monoclinic symmetry in the space group P21/n, No. 14 with the lattice parameters: a = 13.358(2), b = 12.637(2), c = 18.565(3) Å, β = 102.62(1)°, V = 3058.1(8) Å3 and Z = 4. The structure is characterised by the anion [Bi2Br8(CH3COCH3)2]2– which is embedded in a matrix of [Ph4P]+ cations. The anion can be described as two edge‐sharing square pyramids with the apical bromide ions in anti‐position. Acetone co‐ordinates the bismuth atoms via oxygen atoms and increases the co‐ordination number of central bismuth atoms to six which results in the formation of a distorted bi‐octahedron. The distortion is due to the difference in terminal and bridging Bi–Br bond lengths. FT‐IR and Raman spectroscopic data are presented. In addition, the thermal behaviour of the compound was studied with the aid of TG/DSC coupled with MS revealing that acetone leaves the crystal in two steps. The compound melts at 203 °C and transforms into a glass on cooling. 相似文献
15.
Torsten Küppers Eduard Bernhardt Christian W. Lehmann Dr. Helge Willner Prof. Dr. 《无机化学与普通化学杂志》2007,633(10):1666-1672
The Tetracyanoboronic Acids H[B(CN)4]·n H2O, n = 0, 1, 2 Treatment of an aqueous solution of Na[B(CN)4] with an acidic cation exchange resin leads to a solution of the strong tetracyanoboronic acid. Evaporation of the solution at room temperature yields colourless single crystals of [H5O2][B(CN)4] ( , a = 9.5830(2) Å, c = 14.25440(3) Å, Z = 1). Further drying of [H5O2][B(CN)4] (mp. 115 °C) in vacuum at 50 °C gives polycrystalline [H3O][B(CN)4] (P63mc, a = 8.704(1) Å, c = 6.152(1) Å, Z = 2), which is thermally stable up to 145 °C. The anhydrous polycrystalline acid H[B(CN)4] is formed quantitatively by reacting Me3SiNCB(CN)3 with gaseous HCl. This acid starts to decompose at 190 °C with loss of HCN. All three acids were further characterized by vibrational spectroscopy, and elemental analysis. 相似文献
16.
Zinc Iodates – Infrared and Raman Spectra, Crystal Structure of Zn(IO3)2 · 2 H2O The zinc iodates Zn(IO3)2 · 2 H2O and Zn(IO3)2 as well as α‐Co(IO3)2 · 2 H2O were studied by X‐ray, IR‐ and Raman spectroscopic methods. The crystal structure of the dihydrate, which is isostructural with the respective cobalt compound, was determined by X‐ray single‐crystal studies (space group P1, Z = 2, a = 490,60(4), b = 667,31(5), c = 1088,85(9) pm, α = 98,855(6), β = 91,119(7), and γ = 92,841(6)°, R1 = 2,55%, 2639 unique reflections I > 2σ(I)). Transconfigurated Zn(IO3)4(H2O)2 octahedra are threedimensionally connected via common IO3– ions parallel to [001] and hydrogen bonds parallel to [100] and [010], respectively. Anhydrous Zn(IO3)2 crystallizes in space group P21 (Z = 2) with a = 548,9(2), b = 512,4(1), c = 941,8(2) pm, and β = 90,5(3)°. The structure of Zn(IO3)2 is a monoclinically distorted variant of the structures of β‐Ni(IO3)2 (space group P63) and Co(IO3)2 (P3). The O–H … O–IO2 hydrogen bonds of the crystallographically different H2O molecules of the dihydrates (νOD (OD stretching modes of isotopically dilute samples) 2430, 2415, 2333 and 2300 cm–1, Zn(IO3)2 · 2 H2O, 90 K) are examples to the matter of fact that O … O distances are only a bad measure for the strength of hydrogen bonds. The infrared and Raman spectra as well as a group theoretical treatment are presented and discussed with respect to mutual exclusion principle (possible space groups), the strength of the hydrogen bonds and the distortion of the IO3– ions at the C1 lattice sites. 相似文献
17.
Trends in the Structural and Vibrational Properties of the Disulfanes S2X2 (X = H,Halogen, CH3, CF3) 下载免费PDF全文
The geometrical parameters and associated force constants for the molecules XSSX (X = H, halogen, CH3, CF3) were studied using DFT quantum chemistry calculations. The study showed rather monotonic trends in these properties related to the SS bonds, although an anomalous behavior is noted when the substituent is CF3. The calculated vibrational frequencies allowed a confirmation of published band assignments, but corrections were necessary for S2F2 and S2H2. 相似文献
18.
Preparation, Crystal Structure, Thermal Decomposition, and Vibrational Spectra of [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O is a suitable compound for the quantitative determination of beryllium. It can be obtained by reaction of aqueous solutions of carbonatoberyllate with [Co(NH3)6]Cl3. The crystal structure (trigonal‐rhombohedral, R3c (Nr. 161), a = 1071,6(1) pm, c = 5549,4(9) pm, VEZ = 5519(1) · 106 pm3, Z = 6, R1(I ≥ 2σ(I)) = 0,037, wR2(I ≥ 2σ(I)) = 0,094) contains [Co(NH3)6]3+‐ and [Be4O(CO3)6]6–‐ions, which are directly hydrogen bonded as well as with water molecules. The complex cations and anions occupy the positions of a distorted anti‐CaF2‐type. The thermal decomposition, IR and Raman spectra are presented and discussed. 相似文献
19.
《无机化学与普通化学杂志》2018,644(8-9):411-414
The reaction of chlorosulfonyl isocyanate (ClSO2NCO) with anhydrous hydrogen fluoride (aHF) leads to the formation of ClSO2NHC(O)F. The title compound with a melting point of –38 °C is characterized by vibrational spectroscopy and a single crystal structure analysis. It crystallizes in the tetragonal space group I41/a with 16 formula units per unit cell. a = 11.1115(2) Å, c = 16.5654(6) Å. The experimental data are supported by quantum‐chemical calculations on the PBE1PBE/6‐311G(3pd,3df) level of theory. 相似文献
20.
Synthesis, Crystal Structure, and Vibrational Spectra of cis ‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO By reaction of (n‐Bu4N)2[ReBr6] with pyridine and (n‐Bu4N)BH4 in dichloromethane halogeno‐pyridine‐rhenium(III)complexes are formed and purified by chromatography. X‐ray structure determination on a single crystal has been performed of cis‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO (monoclinic, space group P21/c, a = 15.0690(9), b = 8.3337(8), c = 35.588(4) Å, β = 96.409(7), Z = 4). Based on the molecular parameters of the X‐ray structure determination and assuming C2 point symmetry for the anion cis‐[ReBr4Py2]– the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are in the Br–Re–Br axis fd(ReBr) = 1.49, in the asymmetrically coordinated N′–Re–Br · axes fd(ReBr · ) = 1.03 und fd(ReN′) = 2.52 mdyn/Å. 相似文献