首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An iron compound containing guanidinate ligand [Fe((SiMe3)2NC(iPrN)2)2] was synthesized using a conventional lithium‐salt‐elimination reaction, and its chemical structure was characterized through elemental analysis, 1H‐NMR and single‐crystal X‐ray diffraction, respectively. The thermal properties of the compound were examined through thermogravimetric analysis (TGA), and the TGA results demonstrated that the compound possessed sufficient volatility and suitable thermal stability for the CVD process. Moreover, the deposition experiments were conducted using the synthesized compound as a precursor and O2 as an oxygen source to confirm its applicability as a CVD precursor, and α‐Fe2O3 films were successfully deposited at a relatively low deposition temperature (300°C).  相似文献   

2.
The cationic complexes with hexacoordinate silicon(IV), tris[1‐oxopyridine‐2‐olato(1–)]silicon(IV) trifluoromethanesulfonate ( 4 ), 4 · 1/2 C5H5NO2, tris[1‐oxopyridine‐2‐olato(1–)]silicon(IV) ethyl sulfate–ethanol ( 5 · EtOH), and tris[1‐oxopyridine‐2‐olato(1–)]silicon(IV) isopropyl sulfate ( 6 ), were synthesized. The identities of 4 , 4 · 1/2 C5H5NO2, 5 · EtOH, and 6 were established by elemental analyses (C, H, N, S), mass‐spectrometric studies (FAB MS) as well as solid‐state (29Si) and solution (1H, 13C, 19F, 29Si) NMR experiments. In addition, 4 · 1/2 C5H5NO2 was structurally characterized by single‐crystal X‐ray diffraction.  相似文献   

3.
Six new methyl silicon (IV) precursors of the type [MeSi{ON?C(R)Ar}3] [when R = Me, Ar = 2‐C5H4N ( 1 ), 2‐C4H3O ( 2 ) or 2‐C4H3S ( 3 ); and when R = H, Ar = 2‐C5H4N ( 4 ), 2‐C4H3O ( 5 ) or 2‐C4H3S ( 6 )] were prepared and structurally characterized by various spectroscopic techniques. Molecular weight measurements and FAB (Fast Atomic Bombardment) mass spectral studies indicated their monomeric nature. 1H and 13C{1H} NMR spectral studies suggested the oximate ligands to be monodentate in solution, which was confirmed by 29Si{1H} NMR signals in the region expected for tetra‐coordinated methylsilicon (IV) derivatives. Thermogravimetric analysis of 1 revealed the complex to be thermally labile, decomposing to a hybrid material of definite composition. Two representative compounds ( 2 and 4 ) were studied as single source molecular precursor for low‐temperature transformation to silica‐based hybrid materials using sol–gel technique. Formation of homogenous methyl‐bonded silica materials (MeSiO3/2) at low sintering temperature was observed. The thermogravimetric analysis of the methylsilica material indicated that silicon‐methyl bond is thermally stable up to a temperature of 400 °C. Reaction of 2 and Al(OPri)3 in equimolar ratio in anhydrous toluene yielded a brown‐colored viscous liquid of the composition [MeSi{ON?C(CH3)C4H3O}3.Al(OPri)3]. Spectroscopic techniques 1H, 13C{1H}, 27Al{1H} and 29Si{1H} NMR spectra of the viscous product indicated the presence of tetracoordination around both silicon and aluminum atoms. On hydrolysis it yielded methylated aluminosilicate material with high specific surface area (464 m2/g). Scanning electron micrography confirmed a regular porous structure with porosity in the nanometric range. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Diorganotin(IV) derivatives have been synthesized by the reaction of R2SnL2 (R=n‐Bu 1 , Ph 2 ) with monohydrate disodium salt of iminodiacetic acid ( Na2L ) in 1 : 1 M/L ratio under reflux conditions. The compounds have been characterized by FT‐IR, NMR (1H and 13C) spectoscopy, electron ionization mass spectrometry (EIMS), thermogravimetric analyses (TGA) and single crystal XRD. FTIR data indicates a mono‐dentate binding mode of the carboxylic acid group as well as participation of the amino nitrogen and aqua oxygen in coordination with organotin(IV) moieties. NMR data demonstrates a tetra‐coordinated environment around tin(IV) in solution. Mass spectrometric and thermogravimetric analyses verify the close similarities between the molecular structures of both complexes. The thermal stability of diphenyltin(IV) derivative ( 2 ) was found slightly higher than that of the free ligand ( Na2L ). Single crystal X‐ray analysis of the complex 1 have shown a hexa‐coordinated geometry around Sn(IV) with trans configuration. There are evidences for the existence of intermolecular hydrogen bonding in the structure of the complexes. The products displayed significant antibacterial and antifungal activities in contrast to the biologically inactive ligand precursor. However, the hemolytic cytoxicity of the complexes was comparatively high than the free ligand.  相似文献   

5.
A single molecular heterobimetallic complex, [Co2Ti(μ3‐O)(TFA)6(THF)3] (1) [TFA = trifluoroacetate, THF = tetrahydrofuran], was synthesized, structurally and spectroscopically characterized and implemented as a single‐source precursor for the preparation of CoTiO3–CoO composite thin films by aerosol‐assisted chemical vapour deposition (AACVD). The precursor complex was prepared by interaction of Co(OAc)2.4H2O [OAc = (CH3COO?)] with Ti(iso‐propoxide)4 in the presence of trifluoroacetic acid in THF, and was analysed by melting point, CHN, FT‐IR, single‐crystal X‐ray diffraction and thermogravimetric analysis. The precursor complex thermally decomposed at 480 °C to give a residual mass corresponding to a CoTiO3–CoO composite material. Good‐quality crystalline CoTiO3–CoO composite thin films deposited at 500 °C by AACVD and characterized through powder X‐ray diffraction and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy show that the crystallites have a rose‐flower‐like morphology with an average petal size in the range of 2–6 µm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB , iPr2P(C6H4)BCy2 (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH2}] and [PB{GeH2}] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1) the ability to recycle the FLP phosphine‐borane ligand ( PB ) after element deposition, and 2) the single‐source precursor [PB{SiH2}] deposits Si films at a record low temperature from solution (110 °C). The dialkylsilicon(II) adduct [PB{SiMe2}] was also prepared, and shown to release poly(dimethylsilane) [SiMe2]n upon heating. Overall, this study introduces a “closed loop” deposition strategy for semiconductors that steers materials science away from the use of harsh reagents or high temperatures.  相似文献   

7.
Synthesis and Characterization of [Zn{Si(NMe2)2(NHCMe3)(NCMe3)}(μ‐NC5H4)]2, a Molecular Single Source Precursor for ZnSiN2 For an application as single source precursor for ZnSiN2 the siladiazazinca cyclo butane [Zn{Si(NMe2)2(NHCMe3)(NCMe3)}(μ‐NC5H4)]2has been synthesised for the first time from Si(NMe2)2(NLi t‐Butyl)2 and ZnCl2(NC5H5)2. It has been characterized by single crystal structure analysis (P1, a = 870.5(3) pm, b = 903.8(3) pm, c = 1530.6(4) pm, α = 96.982(5)°, β = 106.501(5)°, γ = 104.729(5)°). The CP‐MAS‐NMR data for the nuclei 13C, 15N and 29Si are reported. ZnSiN2 was prepared by thermal decomposition of the precursor molecule and characterized by elemental analysis, EDX, IR spectroscopy and thermal analysis. The crystal structure was determined (X‐ray powder diffraction data, profile matching: P63mc, a = 315.33(1) pm, c = 508.07(2) pm, RB = 4.87). The thermal behaviour of the precursor molecule, the preparation of polymers by linking with NH3 and the decomposition of the polymers in an argon or NH3 stream were investigated.  相似文献   

8.
In this work, tin(II) oxalate was studied as a novel chloride-free starting material for the preparation of a stable Sn-containing precursor solution. This precursor was applied for the chemical solution deposition (CSD) of transparent conducting coatings of SnO2 on Si/SiO2 substrates. An influence of synthesis parameters, such as pH, complexing agent to metal ion ratio on the stability of the citrato peroxo Sn(IV) precursor has been investigated in this study. Insights into the precursor chemistry and its thermal decomposition based on TG-DSC analysis are also presented. The obtained SnO2 films were characterized by high temperature X-ray diffraction (HT-XRD) and scanning electron microscopy (SEM) to evaluate phase purity and film thickness, respectively.  相似文献   

9.
Layer‐by‐layer assemblies consisting of alternating layers of nitrilotris(methylene)triphosphonic acid (NTMP), a polyfunctional corrosion inhibitor, and zirconium(IV) were prepared on alumina. In particular, a nine‐layer (NTMP/Zr(IV))4NTMP stack could be constructed at room temperature, which showed a steady increase in film thickness throughout its growth by spectroscopic ellipsometry up to a final thickness of 1.79 ± 0.04 nm. At higher temperature (70 °C), even a two‐layer NTMP/Zr(IV) assembly could not be prepared because of etching of the alumina substrate by the heated Zr(IV) solution. XPS characterization of the layer‐by‐layer assembly showed a saw tooth pattern in the nitrogen, phosphorus, and zirconium signals, where the modest increases and decreases in these signals corresponded to the expected deposition and perhaps removal of NTMP and Zr(IV). Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) confirmed the attachment of the NTMP molecule to the surface through PO?, PO2?, PO3?, and CN? signals. Increasing attenuation of the Al signal from the substrate after deposition of each layer was observed by both XPS and ToF‐SIMS. Essentially complete etching of the alumina by the heated Zr(IV) solution was confirmed by spectroscopic ellipsometry, XPS, and ToF‐SIMS. Atomic force microscopy revealed that all the films were smooth with Rq roughness values less than 0.5 nm. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The cyclic alkyl(amino) carbene‐anchored silylene–phosphinidene was isolated as L−Si−P(:cAAC−Me) (L=benzamidinate) at room temperature, synthesized from the reduction of L−Si(Cl2)−P(:cAAC−Me) ( 1 ) using two equivalents of KC8. Compound 1 was prepared by the oxidative addition of a chlorophosphinidene to the benzamidinate substituted silylene center. This is the first molecular example of a silylene–phosphinidene characterized by single‐crystal X‐ray structural analysis. Moreover, 1H, 31P, and also 29Si NMR spectroscopic data supported the formulation of the products. The theoretical calculations of compound 2 are in good agreement with the experimental results.  相似文献   

11.
Three‐ and five‐membered rings that bear the (Si‐C‐S ) and (Si‐C‐C‐C‐S ) unit have been synthesized by the reactions of L SiCl ( 1 ; L =PhC(NtBu)2) and L′ Si ( 2 ; L′ =CH{(C?CH2)(CMe)(2,6‐iPr2C6H3N)2}) with the thioketone 4,4′‐bis(dimethylamino)thiobenzophenone. Treatment of 4,4′‐bis(dimethylamino)thiobenzophenone with L SiCl at room temperature furnished the [1+2]‐cycloaddition product silathiacyclopropane 3 . However, reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si at low temperature afforded a [1+4]‐cycloaddition to yield the five‐membered ring product 4 . Compounds 3 and 4 were characterized by NMR spectroscopy, EIMS, and elemental analysis. The molecular structures of 3 and 4 were unambiguously established by single‐crystal X‐ray structural analysis. The room‐temperature reaction of 4,4′‐bis(dimethylamino)thiobenzophenone with L′ Si resulted in products 4 and 5 , in which 4 is the dearomatized product and 5 is formed under the 1,3‐migration of a hydrogen atom from the aromatic phenyl ring to the carbon atom of the C? S unit. Furthermore, the optimized structures of probable products were investigated by using DFT calculations.  相似文献   

12.
Nanocrystalline zirconium carbonitride (Zr‐C‐N) and zirconium oxide (ZrO2) films were deposited by chemical vapor deposition (CVD) of zirconium‐tetrakis‐diethylamide (Zr(NEt2)4) and ‐tert‐butyloxide (Zr(OBut)4), respectively. The films were deposited on iron substrates and characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS). The Zr‐C‐N films show blue, golden brown or bronze colours, with colour stability depending upon the precursor composition (pure metal amide or mixed with Et2NH). The deposition temperature showed no pronounced effect on the granular morphology of the Zr‐C‐N films. The XRD data of the films correspond to the formation of carbonitride phase whereas the XPS analyses revealed a strong surface oxidation and incorporation of oxygen in the film. The films deposited using a mixture of Zr(NEt2)4 and Et2NH showed higher N content, better adhesion and scratch resistance when compared to films obtained from the CVD of pure Zr(NEt2)4. Subject to the precursor composition and deposition temperature (550‐750 °C), the microhardness values of Zr‐C‐N films were found to be in the range 2.11‐5.65 GPa. For ZrO2 films, morphology and phase composition strongly depend on the deposition temperature. The CVD deposits obtained at 350 °C show tetragonal ZrO2 to be the only crystalline phase. Upon increasing the deposition temperature to 450 °C, a mixture of tetragonal and monoclinic modifications was formed with morphology made up of interwoven elongated grains. At higher temperatures (550 and 650 °C), pure monoclinic phase was obtained with facetted grains and developed texture.  相似文献   

13.
Mullite and mullite/Al2O3 precursor sols have been developed for the deposition of oxidation barrier coatings on carbon fibre reinforced composites using a combination of sol–gel synthesis and electrophoresis.The sols were synthesised by controlled hydrolysis and condensation of TEOS (tetraethoxysilane) and Al(OBus)3 (aluminium tri-sec-butylate). The main objective was the definition of synthesis conditions which yield sols suitable for the electrophoretic deposition (EPD). Measurements of the Electrokinetic Sonic Amplitude were used to investigate the electrokinetic properties of the sols in the as-prepared state and depending on the later addition of H2O. 29Si CP/MAS NMR spectra of dried precursor samples were recorded to study the homogeneity of Al/Si mixture. The progress of crystallisation with increasing temperature of heat treatment was examined by XRD. Oxidation protection coatings on C/C–SiC composites were prepared by EPD.Whereas a low H2O to TEOS ratio during the sol synthesis was advantageous for a low mullite formation temperature, a high H2O to TEOS ratio was necessary to enable the EPD. The synthesis of a sol with a low H2O to TEOS ratio in the first step and the later modification of this sol by the addition of water was a successful method to combine the required electrokinetic properties and mullitisation temperatures below 1200 °C.  相似文献   

14.
A way to synthesize the transient zwitterionic silylene L′Si : 8 {L’=CH[(C=CH2)CMe(N(tBu))2]} and achieve its facile dimerization to the remarkable N‐heterobicyclic disilane 8 2 is described. At first, employing the β‐diketiminate ligand L [L=CH(CMeN(tBu))2], both starting materials LH ( 2 ) and its N‐lithium salt LLi ( 3 ) can react with SiBr4 to yield the silylene precursor L′SiBr2 ( 4 ) by silicon‐induced C? H activation at an exocyclic methyl group on the backbone of the ligand. Compound 4 reacts with SiBr4 above room temperature to afford the unexpected terminal CH(SiBr3)‐substituted dibromosilane 6 along with the unique tricyclic trisilane 7 . Reduction of 4 with KC8 at 0 °C furnishes the novel N‐heterobicyclic disilane 8 2, which is a formal dimer of the desired zwitterionic silylene L′Si : ( 8 ). It has been reasoned that compound 8 2 may results from [4+1] cycloaddition of two molecules of 8 to give the transient dimer 8 2 ′ , which subsequently undergoes hydrogen transfer from a terminal methyl group on the backbone of the C3N2Si ligand to the low‐coordinate Si atom. The latter dimerization can be rationalized by the intrinsic zwitterionic character of 8 and insufficient steric protection through the tBu groups at the nitrogen atoms. The novel compounds 3 , 4 , 6 , 7 , and 8 2 have been characterized by 1H, 13C, and 29Si NMR spectroscopy, mass spectrometry, and elemental analysis. Additionally, the structures of 3 , 6 , 7 , and 8 2 were also established by single‐crystal X‐ray diffraction analyses.  相似文献   

15.
The effect of using different solvothermal approaches, involving heat‐up and hot‐injection routes, on the phase, morphology and optical properties of tin sulfide nanoparticles using novel dibutyltin(IV) p‐methylphenyl dithiocarbamate as single source precursor compound have been studied. Dibutyltin(IV) p‐methylphenyldithiocarbamate was synthesized and characterized using various spectroscopic techniques (FT‐IR, 1H, 13C and 119Sn), and elemental analysis. TG analysis, studied under nitrogen, revealed tin sulfide of the rare mixed‐valence binary phase (Sn2S3) as the final residue at the end of the decomposition process. The samples presented as SnS1 and SnS2 obtained by the heat‐up and hot injection routes respectively, at 220 °C and in the presence of oleylamine as surfactant, revealed the α‐cubic phase of SnS with Herzenbergite structure. The X‐ray diffraction analysis of the nanoparticles also revealed patterns which showed preferred growth along (111) orientation; hence, favoring anisotropic shapes which were more distinct at higher magnification images of the TEM as a pseudo spherical morphology tending toward the formation of short rods. The optical property of the nanoparticles exhibited a blue shift in the bandgap energy with respect to the bulk, which is an evidence of quantum confinement effect.  相似文献   

16.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The neutral hexacoordinate silicon(IV) complex 6 (SiO2N4 skeleton) and the neutral pentacoordinate silicon(IV) complexes 7 – 11 (SiO2N2C skeletons) were synthesized from Si(NCO)4 and RSi(NCO)3 (R=Me, Ph), respectively. The compounds were structurally characterized by solid‐state NMR spectroscopy ( 6 – 11 ), solution NMR spectroscopy ( 6 and 10 ), and single‐crystal X‐ray diffraction ( 8 and 11 were studied as the solvates 8? CH3CN and 11? C5H12 ? 0.5 CH3CN, respectively). The silicon(IV) complexes 6 (octahedral Si‐coordination polyhedron) and 7 – 11 (trigonal‐bipyramidal Si‐coordination polyhedra) each contain two bidentate ligands derived from an α‐amino acid: (S)‐alanine, (S)‐phenylalanine, or (S)‐tert‐leucine. The deprotonated amino acids act as monoanionic ( 6 ) or as mono‐ and dianionic ligands ( 7 – 11 ). The experimental investigations were complemented by computational studies of the stereoisomers of 6 and 7 .  相似文献   

18.
New N‐silver(I) acetylbenzamide complexes of type Ln?AgNC9H8O2 (L = PPh3; n = 1, 2a; n = 2, 2b; n = 3, 2c; L = P(OEt)3; n = 1, 2d; n = 2, 2e; n = 3, 2f) were prepared. These complexes were obtained in high yields and characterized by elemental analysis, 1H NMR, 13C{H} NMR, 31P{H} NMR and IR spectroscopy, respectively. The molecular structure of 2b has been determined by X‐ray single‐crystal analysis in which the silver atom is in a distorted tetrahedral geometry and crystallizes as cis–trans. New N‐silver(I) acetylbenzamide complexes have a four‐membered ring, which could influence their chemical and physical properties and modulate volatility. Metal organic chemical vapor deposition experiments were carried out successfully at 400°C and 450°C using 2e as precursor for the deposition of silver films, respectively. The high‐purity silver film obtained at 400°C is dense and homogeneous. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
New organotin(IV) derivatives containing the anionic ligands bis(3,5‐dimethylpyrazol‐1‐yl)dithioacetate [LCS2] and bis(3,5‐dimethylpyrazol‐1‐yl)acetate [LCO2] have been synthesized from reaction between (CH3)2SnCl2 and lithium salts of the ligands. Mononuclear complexes of the type {[LCX2](CH3)2SnCl} (X = S or O) have been obtained and fully characterized by elemental analyses and FT‐IR in the solid state and by NMR (1H, 13C and 119Sn) spectroscopy, conductivity measurements and electrospray ionization mass spectrometry in solution. The acute toxicity of new organotin(IV) derivatives on rat was studied, comparing their effect with those of dimethyltin chloride (CH3)2SnCl2. The comparison of LD50 of organotin(IV) complexes and (CH3)2SnCl2 administered intraperitoneally, as a single dose, evaluated in vivo on rats, showed that toxicity decreases as follows: (CH3)2SnCl2 > LCO2 > LCS2. The effect of these organotin(IV) complexes on DNA was evaluated in vitro and in vivo on rats treated with different doses of these compounds (1/20 LD50 and 1/100 LD50). The lymphocyte DNA status was assessed by the comet assay, a rapid and sensitive single‐cell electrophoresis technique, used to detect primary DNA damage in individual cells. After 36 h from the start of treatment the two new organotin(IV) derivatives induced a significant rise in comet assay parameters, indicating an increasing presence of damaged DNA. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
To further extend temperature range of application and low temperature performance of the ethylene‐styrene copolymers, a series of poly(ethylene‐styrene‐propylene) samples with varying monomer compositions and relatively low glass‐transition temperatures (Tg = −28 – 22 °C) were synthesized by Me2Si(Me4Cp)(N‐t‐Bu)TiCl2/MMAO system. Since the 13C NMR spectra of the terpolymers were complex and some new resonances were present, 2D‐1H/13C heteronuclear single quantum coherence and heteronuclear multiple bond correlation experiments were conducted. A complete 13C NMR characterization of these terpolymers was performed qualitatively and quantitatively, including chemical shifts, triad sequence distributions, and monomer average sequence lengths. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 340–350  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号