首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrotris(3, 5‐dimethylpyrazol‐1‐yl)borate and hydrotris(3‐phenylpyrazol‐1‐yl)borate decompose during reactions with [ReOCl3(PPh3)2] and [NEt4]2[Re(CO)3Br3], respectively. The generated pyrazole ligands form complexes with the rhenium(V) oxo and the rhenium(I ) tricarbonyl cores. X‐ray crystal structures of the oxo‐bridged dimer [Cl(PPh3)(O)Re(μ‐O)(μ‐Me2pz)2Re(O)(HMe2pz)Cl] ( 1 ) and [Re(CO)3(HPhpz)2(Phpz)] ( 2 ) (HMe2pz = 3, 5‐dimethylpyrazole, HPhpz = 3‐phenylpyrazole) show that the substituted pyrazoles can readily deprotonate and act as monodentate or bridging anionic ligands. Re‐N bond lengths between 2.09 and 2.14Å have been observed for the bridging and between 2.12 and 2.23Å for the terminal pyrazole ligands.  相似文献   

2.
The phenylimidorhenium(V) complexes [Re(NPh)X3(PPh3)2] (X = Cl, Br) react with the N‐heterocyclic carbene (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐2‐ylidene (LEt) under formation of the stable rhenium(V) complex cations [Re(NPh)X(LEt)4]2+ (X = Cl, Br), which can be isolated as their chloride or [PF6]? salts. The compounds are remarkably stable against air, moisture and ligand exchange. The hydroxo species [Re(NPh)(OH)(LEt)4]2+ is formed when moist solvents are used during the synthesis. The rhenium atoms in all three complexes are coordinated in a distorted octahedral fashion with the four NHC ligands in equatorial planes of the molecules. The Re–C(carbene) bond lengths between 2.171(8) and 2.221(3) Å indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atoms. Attempts to prepare analogous phenylimido complexes from [Re(NPh)Cl3(PPh3)2] and 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene (Li?Pr) led to a cleavage of the rhenium‐nitrogen multiple bond and the formation of the dioxo complex [ReO2(Li?Pr)4]+.  相似文献   

3.
The nitridorhenium(V) complexes [ReNCl2(PR2Ph)3] (R = Me, Et) react with the N‐heterocyclic carbenes (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐5‐ylidene (LEt) or 1,3,4,5‐tetramethylimidazole‐2‐ylidene (LMe) in absolutely dry THF under complete replacement of the equatorial coordination sphere. The resulting [ReNCl(LR)4]+ complexes (LR = LMe, LEt) are moderately stable as solids and in solution, but decompose in hot methanol under formation of [ReO2(LR)4]+ complexes. With 1,3‐diisopropyl‐4,5‐dimethylimidazole‐5‐ylidene (Li‐Pr), the loss of the nitrido ligand and the formation of a dioxo species is more rapid and no nitridorhenium intermediate could be isolated. The Re‐C bond lengths in [ReNCl(LEt)4]Cl of approximately 2.195Å are relatively long and indicate mainly σ‐bonding in the electron‐deficient d2 system under study. The hydrolysis of the nitrido complexes proceeds via the formation of [ReO3N]2? anions as could be verified by the isolation and structural characterization of the intermediates [{ReN(PMe2Ph)3}{ReO3N}]2 and [{ReN(OH2)(LEt)2}2O][ReO3N].  相似文献   

4.
Synthesis and characterization of seven new complexes [Cu(2‐MeSnic)2(CH3OH)]2 (where 2‐MeSnic is 2‐methylthionicotinate), [Cu(2‐MeSnic)2L2]2 (where L is pyridine — py, ethylnicotinate — Etnic and butylnicotinate — Bunic), [Cu(2‐MeSnic)2L2(H2O)2] (where L is py and nicotinamide — nia) and [Cu(2‐MeSnic)2(N‐Menia)2(H2O)2]·2H2O (where N‐Menia is N‐methylnicotinamide) are reported. The characterization were based on elemental analysis, infrared, electronic and EPR spectra, and magnetic susceptibility measurements over a temperature range of 1.8 — 300 K or 70 — 300 K. Three complexes of different type were studied by X‐ray analysis. The molecule of [Cu(2‐MeSnic)2(CH3OH)]2 has dimeric paddle‐wheel cage structure with a tetragonal pyramidal arrangement around CuII. The dimer results from the fact that carboxyl groups of four 2‐MeSnic anions function as bridging in a syn‐syn arrangement. On the other hand [Cu(2‐MeSnic)2(py)2]2 forms dimers with hexacoordinated CuII atoms in highly distorted coordination octahedra, each with two oxygen atoms of bridging carboxyl groups in an anti‐anti arrangement of two 2‐MeSnic anions, with two oxygen atoms of one asymmetrically chelating 2‐MeSnic anion and with two nitrogen atoms of two pyridine ligands. The temperature independent EPR spectrum for this complex exhibits an axial signal which corresponds to almost isolated S = 1/2 magnetic ions. Magnetic data for the dimer show a weak antiferromagnetic interaction between the two metal ions with J = —0.65 cm—1. The CuII atom in complex [Cu(2‐MeSnic)2(py)2(H2O)2] is hexacoordinated in an elongated centrosymmetrical tetragonal‐bipyramidal arrangement (4 + 2). Based on the molecular structure the electronic, infrared, electron paramagnetic resonance spectra and magnetic properties are discussed and stereochemistry as well as the mode of ligand coordination in new solid complexes under study have been determined.  相似文献   

5.
The bifunctional ligand 2,6‐dipicolinoylbis(N,N‐diethylthiourea) (H2L) readily reacts with mixtures of Zn(CH3COO)2 and LnCl3 in MeOH at ambient temperature with formation of trinuclear heterobimetallic complexes [Zn2Ln(L)2(OAc)3] ( 1a – 1f ) (Ln = Ce, Nd, Sm, Gd, Dy, Er). The X‐ray single‐crystal diffraction and structural studies of the complexes revealed their isostructural nature, in which two doubly‐charged ligands {L2–} bind two Zn2+ ions with the terminal acylthiourea sites and one Ln3+ ion with the central 2,6‐pyridinedicarboxamide site. In the complexes, the coordination numbers of LnIII and ZnII ions are 9 and 5, respectively. Magnetic properties of the complexes were studied by temperature‐dependent dc magnetic measurements. The observed μeff values at room temperature are all closed to the calculated values. Fitting χM and M data of [Zn2Gd(L)2(OAc)3] ( 1d ) shows a giso value of 1.94.  相似文献   

6.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

7.
《中国化学会会志》2017,64(4):420-426
Six new silver complexes containing symmetrical N ‐heterocyclic carbene (NHC ) ligands were synthesized by the reaction of azolium salts with Ag2O in CH2Cl2 . These complexes were tested against Gram‐negative bacterial strains (Escherichia coli and Pseudomonas aeruginosa ), Gram‐positive bacterial strains (Enterococcus faecalis and Staphylococcus aureus ), and fungal strains (Candida albicans and Candida tropicalis ), and all tested complexes showed good activity against the different microorganisms.  相似文献   

8.
The complexes di‐n‐butyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) (1), diphenyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) ( 2 ) and dibenzyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) ( 3 ) are synthesized and characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR spectroscopy, and their structures are determined by X‐ray crystallography. In complex 1 the coordination geometry at tin is a skew‐trapezoidal bipyramid, with cisS,S and cisO,O atoms occupying the trapezoidal plane and two n‐butyl groups occupying the apical positions, which also exhibits strong π–π stacking interactions. In complexes 2 and 3 the geometry at tin is distorted cis‐octahedral, with cisO,O and cisC,C atoms occupying the equatorial plane and transS,S atoms occupying the apical positions. Their in vitro cytotoxicity against two human tumour cell lines, MCF‐7 and WiDr is reported. The ID50 values found are comparable to those found for cis‐platin, but lower than for many other diorganotin compounds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
N‐Heterocyclic carbene adducts of aluminium triiodide, IMes · AlI3 ( 1 ) and IPr · AlI3 ( 2 ) (IMes = 1,3‐bis(2,4,6‐trimethylphenyl)imidazol‐2‐ylidene and IPr = 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) are reported. These adducts are available by the reaction of aluminium triiodide with the correspondingN‐heterocyclic carbene. Compounds 1 and 2 are soluble in hydrocarbon solvents, stable in inert atmosphere, and have been characterised by elemental analysis, NMR spectroscopy and single‐crystal X‐ray diffraction studies.  相似文献   

10.
The N‐heterocyclic carbene‐stabilized chromium(II) alkyl, aryl, and alkynyl complexes (IPM)2CrR2 [R = Me ( 2 ), Ph ( 3 ), C≡CPh ( 3 ); IPM = 1,3‐diisopropyl‐4,5‐dimethylimidazole‐2‐ylidene] were prepared by metathesis reactions of (IPM)2CrCl2 ( 1 ) with the corresponding organolithium reagents. Further reaction of 3 with an organic azide, 1‐azidoadamantane, yielded an organonitridochromium(V) compound (IPM)2Ph2Cr≡N ( 5 ). Compounds 2 – 5 are fully characterized by 1H NMR and IR spectroscopy, X‐ray crystallography as well as by elemental analysis. The structural analysis shows that the metal atom adopts a nearly square‐planar arrangement in the respective 2 , 3 , and 4 and a square‐pyramidal one in 5 . The reaction of 3 with the organic azide to 5 appears a novel way to the organonitridochromium compound.  相似文献   

11.
N‐Heterocyclic carbene‐phosphinidene adducts of the type (IDipp)PR [R = Ph ( 5 ), SiMe3 ( 6 ); IDipp = 1,3‐bis(2,6‐diisopropylphenyl)imidazolin‐2‐ylidene] were used as ligands for the preparation of rhodium(I) and iridium(I) complexes. Treatment of (IDipp)PPh ( 5 ) with the dimeric complexes [M(μ‐Cl)(COD)]2 (M = Rh, Ir; COD = 1,5‐cyclcooctadiene) afforded the corresponding metal(I) complexes [M(COD)Cl{(IDipp)PPh}] [M = Rh ( 7 ) or Ir ( 8 )] in moderate to good yields. The reaction of (IDipp)PSiMe3 ( 6 ) with [Ir(μ‐Cl)(COD)]2 did not yield trimethylsilyl chloride elimination product, but furnished the 1:1 complex, [Ir(COD)Cl{(IDipp)PSiMe3}] ( 9 ). Additionally, the rhodium‐COD complex 7 was converted into the corresponding rhodium‐carbonyl complex [Rh(CO)2Cl{(IDipp)PPh}] ( 10 ) by reaction with an excess of carbon monoxide gas. All complexes were fully characterized by NMR spectroscopy, microanalyses, and single‐crystal X‐ray diffraction studies.  相似文献   

12.
The reaction of [ReBr(CO)5] with phosphite and phosphonite ligands in toluene yielded cis, mer‐[ReBr(CO)2L3] ( 2 : L = P(OMe)3 2a : P(OEt)3 2b : PPh(OMe)2 2c : PPh(OEt)2 2d ). Compounds 2c and 2d were also obtained, as were the phosphinite complexes 2e [L = PPh2(OMe)] and 2f [L = PPh2(OEt)], by reaction of the corresponding phosphorus ligand with trans, mer‐[ReBr(CO)3L2]. Compounds 2 were all characterized by elemental analysis, mass spectrometry and NMR spectroscopy, and the structures of 2b , 2c and 2d were determined by X‐ray diffractometry. Compounds 2a‐d are stable in chloroform and dichloromethane, but 2e and 2f are transformed into the corresponding trans, mer‐[ReBr(CO)3L2] complexes by a reaction for which a partial mechanism is put forward.  相似文献   

13.
[ReNCl2(PPh3)2] and [ReNCl2(PMe2Ph)3] react with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (HLPh) under formation of the stable rhenium(V) nitrido complex [ReNCl(HLPh)(LPh)], which contains one of the two NHC ligands with an additional orthometallation. The rhenium atom in the product is five‐coordinate with a distorted square‐pyramidal coordination sphere. The position trans to the nitrido ligand is blocked by one phenyl ring of the monodentate HLPh ligand. The Re–C(carbene) bond lengths of 2.072(6) and 2.074(6) Å are comparably long and indicate mainly σ‐bonding between the NHC ligand and the electron deficient d2 metal atom. The chloro ligand in [ReNCl(HLPh)(LPh)] is labile and can be replaced by ligands such as pseudohalides or monoanionic thiolates such as diphenyldithiophosphinate (Ph2PS2?) or pyridine‐2‐thiolate (pyS?). X‐ray structure analyses of [ReN(CN)(HLPh)(LPh)] and [ReN(pyS)(HLPh)(LPh)] show that the bonding situation of the NHC ligands (Re–C(carbene) distances between 2.086(3) and 2.130(3) Å) in the product is not significantly influenced by the ligand exchange. The potentially bidentate pyS? ligand is solely coordinated via its thiolato functionality. Hydrogen atoms of each one of the phenyl rings come close to the unoccupied sixth coordination positions of the rhenium atoms in the solid state structures of all complexes. Re–H distances between 2.620 and 2.712Å do not allow to discuss bonding, but with respect to the strong trans labilising influence of “N3?”, weak interactions are indicated.  相似文献   

14.
Tetra(N‐methylimidazole)‐beryllium‐di‐iodide, [Be(Me‐Im)4]I2 ( 1 ), was prepared from beryllium powder and iodine in N‐methylimidazole suspension to give yellow single crystal plates, which were characterized by X‐ray diffraction and IR spectroscopy. Compound 1 crystallizes tetragonally in the space group I 2d with four formula units per unit cell. Lattice dimensions at 100(2) K: a = b = 1784.9(1), c = 696.2(1) pm, R1 = 0.0238. The structure consists of homoleptic dications [Be(Me‐Im)4]2+ with short Be–N distances of 170.3(3) pm and iodide ions with weak interionic C–H ··· I contacts. Experiments to yield crystalline products from reactions of N‐methylimidazole with BeCl2 and (Ph4P)2[Be2Cl6], respectively, in dichloromethane solutions were unsuccessful. However, single crystals of [Be3(μ‐OH)3(Me‐Im)6]Cl3 ( 2 ) were obtained from these solutions in the presence of moisture air. According to X‐ray diffraction studies, two different crystal individuals ( 2a and 2b ) result, depending on the starting materials BeCl2 and (Ph4P)2[Be2Cl6], respectively [ 2a : Space group P21/n, Z = 4; 2b : Space group P , Z = 2]. As a side‐product from the reaction of N‐methylimidazole with (Ph4P)2[Be2Cl6] single crystals of (Ph4P)Cl·CH2Cl2 ( 3 ) were identified crystallographically (P21/n, Z = 4) which are isotypical with the corresponding known bromide (Ph4P)Br·CH2Cl2.  相似文献   

15.
The mercury(II) metal crown ether ( 2a ) was obtained in high yield by reaction of the carbene precursor 1,2‐bis[N‐(1‐naphthylmethylene)imidazoliumethoxy]benzene dihexafluorophosphate ( 1 ) and Hg(OAc)2. Addition of NaI to the acetone solution of 2a resulted in precipitation of pale yellow solid 2b . The structures of 2a and 2b were determined by single‐crystal X‐ray diffractometry. Both molecules display a helical conformation with a torsional cycle. The mercury atom in complex 2a is tricoordinated by two intramolecular carbene carbon atoms and an acetate oxygen atom. The mercury atom in complex 2b is tetracoordinated by two intramolecular carbene carbon atoms and two cis‐iodine atoms.  相似文献   

16.
Ru(II) complexes 1 – 3 bearing various N‐heterocyclic carbene (NHC) ligands were synthesized, and their photophysical, electrochemical, and electrogenerated chemiluminescence (ECL) properties were discussed to evaluate a potential of their use as multicolor ECL labels. Interestingly, they exhibited ECL emission ranging from greenish‐yellow to red both in nonaqueous and mixed aqueous solutions, which might show the potential of the Ru(II) complexes as multicolor ECL labels.  相似文献   

17.
Reaction of the carbene precursor 9,10‐bis(N‐ethylimidazoliummethyl)anthracene hexafluorophosphate ( 1 ) and Ag2O yielded the dinuclear metallocyclophane ( 2 ) in high yield. The structures of 1 and 2 were determined by X‐ray crystallography.  相似文献   

18.
This paper contains the synthesis and characterization of the seven new benzimidazolium salts and their corresponding new palladium(II)‐NHC complexes with the general formula [PdX2(NHC)2], (NHC = N‐heterocyclic carbene, X = Cl or Br), and also their catalytic activity in direct C‐H bond arylation of 2‐substituted furan derivatives with aryl bromides and aryl chlorides. Under the optimal conditions, these palladium(II)‐NHC complexes showed the good catalytic performance for the direct C‐H bond arylation of 2‐substituted furans with (hetero)aryl bromides, and with readily available and inexpensive aryl chlorides. The C‐H bond arylation regioselectively produced C5‐arylated furans by using 1 mol% of the palladium(II)‐NHC catalysts in moderate to high yields.  相似文献   

19.
[TcI(NO)Cl(H2L1)2]+ cations (H2L1 = 2‐(diphenylphosphanyl)aniline) are formed during reactions of H2L1 with (NBu4)[Tc(NO)Cl4(MeOH)] or (NH4)TcO4/HCl/NH2OH mixtures. Different isomers were isolated depending on the counterions and solvents used. The technetium(I) complexes cis‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2]Cl, trans‐NO,Cl,cis‐P,P‐[TcI(NO)Cl(H2L1)2]2(TcCl6), and trans‐NO,Cl,trans‐P,P‐[TcI(NO)Cl(H2L1)2](PF6) were isolated in crystalline form and studied by spectroscopic methods and X‐ray crystallography. DFT calculations show that there are only minor energy differences between the three isomers and the formation of the individual compounds is most probably strongly influenced by interactions with solvents and counterions.  相似文献   

20.
Nitridorhenium(V) Complexes with Dimercapto Succinic Acid Dimethylester. Preparation, Characterization, and Crystal Structure of [Re{NC(CH3)2PPhMe2}(DMSMe2)2] Reaction of [ReNCl2(Me2PhP)3] 1 with two equivalents of dimercaptosuccinic acid dimethylester (DMSMe2) results in the formation of a neutral, diamagnetic rhenium(V)‐DMSMe2 complex with a phenyldimethylphosphinoisopropyl group at the nitrido ligand as a consequence of a nucleophilic attack of the coordinated nitrido ligand on the solvent molecule. The formed complex 2 of the composition [Re{NC(CH3)2(Me2PhP)}(DMSMe2)2] crystallizes in the triclinic space group P 1, a = 12.334(7), b = 12.412(7), c = 12.414(8) Å; α = 60.14(3)°, β = 67.98(3)°, γ = 80.63(6)°; Z = 2. Rhenium is located in a square‐pyramidal configuration of the donor atoms. The two meso‐DMSMe2 ligands are in a syn‐endo conformation. The rhenium‐nitrogen bond (1.697(12) Å) is only slightly longer than typical Re–N bonding distances in nitrido complexes and comparable with other Re–N–C bonding distances. The addition of a solvent molecule is observed in acetone ( 2 ) as well as in methylethylketone ( 3 ). Moreover, a reaction of the nitrido group with the condensation product of ketone is found by mass spectrometry ([ReN{C(CH3)(C2H5)CH2C(O)C2H5(Me2PhP)}(DMSMe2)2] 4 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号