首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of perfluorophenyl‐substituted dithienophosphole derivates has been synthesized. Investigation of their photophysical properties, as well as their organization in the solid state reveals that these properties can be manipulated via introduction of bromine substituents in 2,6‐position of the dithienphosphole scaffold, as well as the complexation of the phosphorus center with an electron rich gold(I) fragment. The strongly electron‐withdrawing character of the perfluorophenyl‐group surmounts the effect of the oxidation of the phosphorus center with respect to photophysics, leading to leading to optoelectronic features similar to those of the trivalent phosphole species. The trivalent phosphole species. The solid‐state organization of the members of this perfluorinated dithienophosphole family, on the other hand, strongly depends on the heteroatoms present within the system, as close intermolecular interactions can be observed between varieties of different atoms (Au‐Au, Br‐Br, Br‐O, Br‐C, F‐C, O‐S), next to regular C‐C π‐stacking interactions.  相似文献   

3.
4.
A new and efficient two‐step solid‐state synthesis method is described for 2‐thioxo‐4‐imidazolidinone from aryl isothiocyanate and free amino acid. This method requires only simple equipment and is easy to perform. The products reported were characterized on the basis of IR, MS, 1H NMR, 13C NMR and elemental analysis.  相似文献   

5.
The isotypic lithium rare‐earth oxonitridosilicates LiLn5Si4N10O (Ln = La, Pr) were synthesized at temperatures of 1200 °C in weld shut tantalum ampoules employing liquid lithium as flux. Thereby, a silicate substructure with a low degree of condensation was obtained. LiLa5Si4N10O crystallizes in space group P$\bar{1}$ [Z = 1, LiLa5Si4N10O: a = 5.7462(11), b = 6.5620(13), c = 8.3732(17) Å, α = 103.54(3), β = 107.77(3), γ = 94.30(3), wR2 = 0.0405, 1315 data, 96 parameters]. The nitridosilicate substructure consists of loop branched dreier single‐chains of vertex sharing SiN4 tetrahedra. Lattice energy calculations (MAPLE) and EDX measurements confirmed the electrostatic bonding interactions and the chemical compositions. The 7Li solid‐state MAS NMR investigation is reported.  相似文献   

6.
Two new coordination polymers [Pb(TIP)(1,3‐bdc)]n ( 1 ) and [Pb(Dpq)(fum)]n ( 2 ) (TIP = 2‐(2‐thienyl)imidazo[4,5‐f]1,10‐phenanthroline, Dpq = dipyrido[3,2‐d:2′,3′‐f]quinoxaline, 1,3‐H2bdc = benzene‐1,3‐dicarboxylic acid, fum = fumaric acid) were synthesized by hydrothermal reactions and were characterized by elemental analyses, IR spectroscopy and single‐crystal X‐ray diffraction. Complex 1 is a one‐dimensional (1D) chain, which is bridged by 1,3‐bdc ligands. This is further extended into a three‐dimensional (3D) supramolecular structure by hydrogen bonding interactions. Compound 2 exhibits a two‐dimensional (2D) network structure, which is further stacked by π–π interactions to form a 3D supramolecular framework. The most important feature of these two complexes is that the N‐donor ligands with an extended π‐system play a crucial role in the formation and stabilization of the final supramolecular frameworks. Moreover, the fluorescence property of complex 1 was also investigated in the solid state at room temperature.  相似文献   

7.
8.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

9.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

10.
The synthesis of a unique series of heteromultinuclear transition metal compounds is reported. Complexes 1‐I‐3‐Br‐5‐(FcC≡C)‐C6H3 ( 4 ), 1‐Br‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 6 ), 1,3‐(bpy‐C≡C)2‐5‐(FcC≡C)‐C6H3 ( 7 ), 1‐(XC≡C)‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 8 , X = SiMe3; 9 , X = H), 1‐(HC≡C)‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 11 ), 1‐[(Ph3P)AuC≡C]‐3‐[(CO)3ClRe(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3 ( 13 ), 1‐[(Ph3P)AuC≡C]‐3‐(bpy‐C≡C)‐5‐(FcC≡C)‐C6H3 ( 14 ), [1‐[(Ph3PAuC≡C]‐3‐[{[Ti](C≡CSiMe3)2}Cu(bpy‐C≡C)]‐5‐(FcC≡C)‐C6H3]PF6 ( 16 ), and [1,3‐[(tBu2bpy)2Ru(bpy‐C≡C)]2‐5‐(FcC≡C)‐C6H3](PF6)4 ( 18 ) (Fc = (η5‐C5H4)(η5‐C5H5)Fe, bpy = 2,2′‐bipyridiyl‐5‐yl, [Ti] = (η5‐C5H4SiMe3)2Ti) were prepared by using consecutive synthesis methodologies including metathesis, desilylation, dehydrohalogenation, and carbon–carbon cross‐coupling reactions. In these complexes the corresponding metal atoms are connected by carbon‐rich bridging units comprising 1,3‐diethynyl‐, 1,3,5‐triethynylbenzene and bipyridyl units. They were characterized by elemental analysis, IR and NMR spectroscopy, and partly by ESI‐TOF mass spectrometry., The structures of 4 and 11 in the solid state are reported. Both molecules are characterized by the central benzene core bridging the individual transition metal complex fragments. The corresponding acetylide entities are, as typical, found in a linear arrangement with representative M–C, C–CC≡C and C≡C bond lengths.  相似文献   

11.
12.
Single crystalline , (Tz*) = 1,2,3‐triazolate anion, C2H2N3, was obtained by the reaction of terbium metal with the amine 1H‐1,2,3‐triazole. As no additional solvent was used, the formation of a homoleptic framework without additional co‐ligands is accessible. Furthermore molecular hydrogen is produced. is a 2‐dimensional framework with a (6,6) topology including (Tz*) double bridges. The structure can be deduced from a basic structure type as it adopts the AlCl3 structure with the triazolate ligands establishing the package. (Tz*) thus function as μ‐η12/μ‐η21 linkers between trivalent terbium ions that have a C.N. of nine. The framework exhibits an exceptional thermal stability up to 380 °C considering the three neighbouring nitrogen atoms of the triazolate ligands. At this point the framework decomposes in one single exothermic step under release of N2.  相似文献   

13.
Polysulfonylamines. CLXIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 12. The Orthorhombic Double Salt Na2Cs2[(CH3SO2)2N]4·3H2O: A Three‐Dimensional Coordination Polymer Built up from Cesium‐Anion‐Water Layers and Intercalated Sodium Ions The packing arrangement of the three‐dimensional coordination polymer Na2Cs2[(MeSO2)2N]4·3H2O (orthorhombic, space group Pna21, Z′ = 1) is in some respects similar to that of the previously reported sodium‐potassium double salt Na2K2[(MeSO2)2N]4·4H2O (tetragonal, P43212, Z′ = 1/2). In the present structure, four multidentately coordinating independent anions, three independent aquo ligands and two types of cesium cation form monolayer substructures that are associated in pairs to form double layers via a Cs(1)—H2O—Cs(2) motif, thus conferring upon each Cs+ an irregular O8N2 environment drawn from two N, O‐chelating anions, two O, O‐chelating anions and two water molecules. Half of the sodium ions occupy pseudo‐inversion centres situated between the double layers and have an octahedral O6 coordination built up from four anions and two water molecules, whereas the remaining Na+ are intercalated within the double layers in a square‐pyramidal and pseudo‐C2 symmetric O5 environment provided by four anions and the water molecule of the Cs—H2O—Cs motif. The net effect is that each of the four independent anions forms bonds to two Cs+ and two Na+, two independent water molecules are involved in Cs—H2O—Na motifs, and the third water molecule acts as a μ3‐bridging ligand for two Cs+ and one Na+. The crystal cohesion is reinforced by a three‐dimensional network of conventional O—H···O=S and weak C—H···O=S/N hydrogen bonds.  相似文献   

14.
Metallographical and differential thermoanalytical (DTA) investigatitons indicate that the well known phosphide Co2P (Pearson code oP12, space group Pnma, Co2Si type) is not stable up to the melting point, T = 1659 K; it is therefore designated as the low‐temperature phase α‐Co2P. In the temperature range from 1428 to 1659 K, another, high‐temperature phase, designated as β‐Co2P, exists. X‐ray powder diffraction investigation of liquid quenched alloys in the composition range xP = 0.25 to 0.335, with xP as the mole fraction, show that the high‐temperature phase β‐Co2P is isotypic with Fe2P (hP9, P 6 2m). For the ideal composition Co2P, the unit cell parameters are: a = 5.742(2) Å, c = 3.457(5) Å, c/a = 0.621. Among the binary transition metal‐containing phosphides and arsenides isotypic with Fe2P, β‐Co2P is the only known high‐temperature phase and it shows (i) the highest axial ratio c/a and (ii) the “smallest” distortion of the hcp substructure formed by the transition metals atoms in the Fe2P structure type.  相似文献   

15.
Red, transparent single crystals of molybdenum(VI) dioxide dibromide MoO2Br2 emerged as by‐product after thermal analyses of reaction mixtures comprising REBr3 (RE = La or Gd) and MoO3. The structure of this highly water sensitive compound can be described in the non‐centrosymmetric monoclinic space group Cc with the lattice constants a = 1522.33(15) pm, b = 390.61(4) pm, c = 771.09(8) pm, β = 104.394(7)° and four formula units per unit cell. Crystallographically unique Mo6+ cations are surrounded by four oxide and twobromide anions in the shape of distorted octahedra withthe two Br ligands situated in trans position to each other. These octahedra are interconnected by the four O2– anions via vertices to form {MoO Br } layers parallel to the bc plane, whereas the bromide anions remain terminal. These sheets are piled along [100] with the Br anions pointing towards the center of square voids of adjacent layers.  相似文献   

16.
Employing a multitude of modern solid state NMR techniques including 13C{15N}REDOR NMR, 1H–13C CP NMR, 11B MQMAS NMR spectroscopic experiments, the structural organization of Si2B2N5C4 ceramic has been studied. The experiments were executed on double isotope enriched (13C, 15N) and natural isotope abundance Si2B2N5C4 ceramics. The materials were synthesized by aminolysis and subsequent pyrolysis of intermediate pre‐ceramic polymers that were obtained from the single source precursor TSDE, 1‐(trichlorosilyl)‐1‐(dichloroboryl)ethane (Cl3Si–CH(CH3)–BCl2). The result of the 13C{15N} REDOR NMR spectroscopic experiment shows that carbon atoms are incorporated into the network by bridging to nitrogen, which already occurs during the polymerization step. Furthermore, the combined results of 11B NMR and 11B MQMAS NMR indicate that boron atoms may also be connected to carbon in addition to nitrogen.  相似文献   

17.
BaB2S4: The first non‐oxidic Chalcogenoborate with Boron in a trigonal‐planar and tetrahedral Coordination Hitherto we know boron in a trigonal‐planar and a tetrahedral coordination within one crystal structure from boron oxides in various compounds. With the novel bariummetathioborate BaB2S4 we now report a crystal structure containing BS3 and BS4 units in the ratio 1 : 1 forming infinite chains along [001]. BaB2S4 was synthesized in a solid state reaction at a temperature of 800 °C from barium sulfide, amorphous boron and sulfur and crystallizes in the monoclinic space group Cc (no. 9) with the following lattice parameters: a = 6.6465(5) Å, b = 15.699(1) Å, c = 6.0306(5) Å, β = 110.96(1)°, Z = 4.  相似文献   

18.
Reaction of [Mn2(CO)10] with 2‐mercapto‐1‐methylimidazole in the presence of Me3NO at 25 °C afforded two new dimanganese complexes [Mn2(CO)6(μ‐SN2C4H5)2] ( 1 ) and [Mn2(CO)7(μ‐SN2C4H5)2] ( 2 ). Compound 1 consists of two μ‐SN2C4H5 ligands, each bound through the sulfur atom to two Mn atoms and through the nitrogen atom to one Mn atom forming a four‐membered chelate ring. Compound 2 was found to consist of one μ‐SN2C4H5 ligand in a similar bonding mode to 1 but another μ‐SN2C4H5 ligand coordinates through the sulfur atom to one Mn atom and through the nitrogen atom to another Mn atom. Compound 1 was also obtained as the only product from the reaction of [Mn2(CO)8(NCMe)2] with 2‐mercapto‐1‐methylimidazole. In contrast, a similar reaction of [Re2(CO)8(NCMe)2] with 2‐mercapto‐1‐methylimidazole led to the formation of the di‐, tri‐, and tetranuclear complexes [Re3(CO)8(μ‐CO)(μ3‐SN2C4H5)2(μ‐H)] ( 3 ), [Re4(CO)12(μ‐SN2C4H5)4] ( 4 ), and [Re2(CO)6(μ‐SN2C4H5)2] ( 5 ). Compound 3 provides a unique example of a hydrido trirhenium compound. The reaction of [Cr(CO)3(NCMe)3] and [Mo(CO)3(NCMe)3] with 1 in refluxing THF afforded the mixed metal complexes [CrMn2(CO)8(μ‐CO)2(μ3‐SN2C4H5)2] ( 6 ) and [MoMn2(CO)8(μ‐CO)2(μ3‐SN2C4H5)2] ( 7 ), respectively, in which two Mn–M (M = Mo, Cr) bonds were formed. In contrast, a similar treatment of [W(CO)3(NCMe)3] with 1 yielded two W‐Mn complexes [Mn2W(CO)8(μ‐CO)2(μ3‐SN2C4H5)2] ( 8 ) and [Mn2W(CO)7(μ‐CO)2(SN2C4H5)(μ3‐SN2C4H5)2] ( 9 ). Treatment of 1 with [Fe3(CO)12] at 70‐75 °C afforded the trinuclear mixed‐metal complex [FeMn2(CO)8(μ‐CO)(μ3‐SN2C4H5)2] ( 10 ) and the diiron side product [Fe2(CO)6(μ‐S2N2C4H5)2] ( 11 ). Compounds 6 ‐ 10 have a bent open structure of three metal atoms linked by two metal‐metal bonds and all, except 9 and 10 , contain a noncrystallographic two‐fold axis of symmetry. Compound 9 is structurally similar to 8 , but it contains a SN2C4H6 ligand, mono coordinated through the exocyclic sulfur atom to the W atom and a Mn–Mn bond instead of a Mn–W bond. Compound 11 comprises two bridging S2N2C4H5 ligands, which arise from the coupling of 2‐mercapto‐1‐methylimidazole with sulfur.  相似文献   

19.
Zn8P12N24O2 – a Nitridophosphate Oxide with Sodalite Structure The reaction between zinc metal and phosphorus nitride imide PN(NH) was investigated. Surprisingly, no Zn6P12N24 was formed as assumed in former investigations but phase pure Zn8[P12N24]O2 ( (Nr. 217), a = 8.2422(2) Å; Z = 1) was obtained due to contamination by a small amount of oxygen. The existence of Zn8[P12N24]O2 was formerly supposed, but neither its crystal structure nor its exact composition have been unequivocally reported so far. The stoichiometric formula was deducted from elemental analyses, XANES spectroscopy at the phosphorus K‐threshold and IR‐spectroscopy using the crystallographic results of electron diffraction, X‐ray powder diffraction and solid‐state NMR spectroscopy. Zn8[P12N24]O2 adopts the sodalite structure type and is thus isotypic with Zn8[P12N24]X2 with X = S, Se, Te and Zn8[B12O24]O2.  相似文献   

20.
Ag6(VIVO)2(PO4)2(P2O7) was obtained by reaction of Ag3PO4 and (VO)2P2O7 (sealed ampoule, 550 °C, 3 d). The crystal structure of the new mixed ortho‐pyrophosphate was determined from X‐ray single‐crystal data [Pnma, Z = 4, a = 12.759(3) Å, b = 17.340(4) Å, c = 6.418(1) Å, R1 = 0.071, wR2 = 0.184 for 3174 unique reflections with Fo > 4σ(Fo), 141 variables]. Ag+ ions are located in between layers [(VIVO)2(PO4)2(P2O7)]6–. Equilibrium relations of the new phosphate to neighboring phases were determined. The electronic structure of the (VIV≡O)2+ group was investigated by polarized electronic absorption spectroscopy (ν̃1a = 9450 cm–1, ν̃1b = 9950 cm–1, ν̃2 = 14750 cm–1), EPR spectroscopy [X‐ and Q‐band, powder and single crystal, orthorhombic crystal g‐tensor with g1 = 1.9445(3), g2 = 1.9521(3), g3 = 1.9695(3)], and magnetic measurements (powder, μexp/μB = 1.71, Θp = –1.7 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号