首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two coordination polymers, namely {[Mn(2,4′‐bpdc)(bimb)(H2O)0.5] · 0.5H2O}n ( 1 ) and [Mn(4,4′‐bpdc)(bimb)]n · 2.5H2O ( 2 ) [2,4′‐bpdc = biphenyl‐2,4′‐dicarboxylate, 4,4′‐bpdc = biphenyl‐4,4′‐dicarboxylate, and bimb = 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene], were hydrothermally synthesized by reactions of manganese(II) salt with the rigid ligand 1,4‐bis(1‐imidazol‐yl)‐2,5‐dimethyl benzene and isomeric biphenyl dicarboxylate ligands. Complex 1 has an unusual 6‐connected three‐dimensional (3D) architecture with point symbol (44.611). Complex 2 has also a 3D structure with two‐interpenetrated pcu topology with point symbol (412.63). Structural comparisons show that the positions of the carboxylate groups in the ligand backbone play an important role in governing the structural topologies of these complexes.  相似文献   

2.
Under hydrothermal conditions, three new AgI coordination polymers, [Ag(L1)(Hmip)]n ( 1 ), [Ag(L2)0.5(ndc)0.5]n ( 2 ), and {[Ag(L3)0.5(Htbi)] · 0.25H2O}n ( 3 ) [H2mip = 5‐methylisophthalic acid, L1 = 1,4‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2ndc = 2,6‐naphthalenedicarboxylic acid, L2 = 1,3‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, H2tbi = 5‐tert‐butyl isophthalic acid, L3 = 1,4‐bis(5,6‐dimethylbenzimidazole)butane] were synthesized by employing flexible bis(benzimidazole) and dicarboxylic acid ligands. Polymer 1 displays a 2D 4‐connected 4L2 underlying net topology with the point symbol of (65.8) in standard representation. Compound 2 possesses a 2D uninodal 4‐connected Shubnikov tetragonal plane net (sql) based on a dinuclear AgI clusters with the point symbol (44.62), which is further extended into a 3D supramolecular framework by π–π interactions. Compound 3 possesses dinuclear molecular complex groups, which form chains by weak Ag–O (2.6 Å) coordination bonds, and further assembled into a 2D supramolecular layer by hydrogen bonds and π–π stacking interactions. These complexes exhibit intense fluorescent emissions in solid state. UV/Vis diffuse reflection spectra and the excellent catalytic activity for the degradation of the congo red azo dye in a Fenton‐like process are discussed.  相似文献   

3.
Three coordination complexes, namely, [Zn(btbp)(3‐npa)]n ( 1 ), [Co(btbh)(3‐npa)]n ( 2 ), and {[Co(btbb)(5‐nipa)(H2O)] · H2O}n ( 3 ) (btbp = 1,3‐bis(thiabendazole)propane, btbh = 1,6‐bis(thiabendazole)hexane, btbb = 1,4‐bis(thiabendazole)butane, 3‐H2npa = 3‐nitrophthalic acid and 5‐H2nipa = 5‐nitroisophthalic acid) were synthesized under hydrothermal conditions and characterized by physicochemical and spectroscopic methods as well as by single‐crystal X‐ray diffraction. Complex 1 features a fascinating meso‐helical chain, which is further extended into a 2D supramolecular framework involving π ··· π stacking interactions. Complexes 2 and 3 show dinuclear structures. Complex 2 is further connected through C–H ··· O hydrogen bonding interactions to afford a 2D supramolecular layer, whereas complex 3 is further extended to a rare 2‐nodal (3,4)‐connected supramolecular sheet with a point symbol of {3.42.5.6.7}2{3.82} by O–H ··· O hydrogen bonding interactions. The electrochemical behaviors of the two cobalt complexes 2 and 3 were reported. Moreover, the luminescent properties for 1 and the photocatalytic properties for the complexes were investigated.  相似文献   

4.
Three metal‐organic coordination polymers, namely {[Cd(L1)(1,2‐chdc)] · 2H2O}n ( 1 ), {[Ni(L2)(1,2‐chdc)] · H2O}n ( 2 ), and [Cd(L2)(npht)]n ( 3 ) [L1 = 1,2‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, L2 = 1,2‐bis(5,6‐dimethylbenzimidazol‐1‐ylmethyl)benzene, 1,2‐H2chdc = 1,2‐cyclohexanedicarboxylic acid, H2npht = 3‐nitrophthalic acid] were synthesized under hydrothermal conditions and structurally characterized by single‐crystal X‐ray diffraction methods, IR spectroscopy, TGA, and elemental analysis. In compound 1 , two 1,2‐chdc2– ligands connect two neighboring Cd atoms to form a dinuclear [Cd2(1,2‐chdc)2] subunit, which is further linked by L1 ligands to construct a 1D ladder‐like chain. Compound 2 exhibits a 2D (4,4) coordination network with {44.62} topology, whilst compound 3 shows a 1D helical chain structure. The fluorescence, UV/Vis diffuse reflection spectra, and catalytic properties of complexes 1 – 3 for the degradation of the congo red azo dye in a Fenton‐like process are investigated.  相似文献   

5.
Three metal coordination polymers [Zn(bdc)(L)(H2O)]n ( 1 ), [Co(pta)(L)(H2O)2]n ( 2 ), and [Cd(tda)(L)(H2O)]n ( 3 ) [H2bdc = 1,2‐benzene dicarboxylate acid, H2pta = terephthalic acid, H2tda = 2,5‐thiophenedicarboxylic acid, L = 3,5‐bis(imidazole‐1‐yl)pyridine] were synthesized and structurally characterized by IR spectroscopy, elemental analysis, X‐ray powder diffraction, and X‐ray single crystal diffraction. Complex 1 shows a three‐dimensional (3D) structure with cco topology with the symbol 65 · 8, whereas complex 2 features a 3D structure with cds topology with the symbol 65 · 8. Complex 3 has a 2D network constructed by the cadmium atoms bridged through the ligands tda and L. Their X‐ray powder diffraction patterns were compared with the simulated ones. Moreover, their luminescent properties were investigated in the solid state at room temperature, and the thermogravimetric analyses were carried out to study the thermal stability of the 3D networks.  相似文献   

6.
Three coordination polymers, namely [Co(BDC)( L )] · H2O ( 1 ), [Co(NPH)( L )] · H2O ( 2 ), and [Ni(NPH)( L )(H2O)3] · H2O ( 3 ) [H2BDC = 1, 3‐benzenedicarboxylic acid, H2NPH = 3‐nitrophthalic acid, L = N,N′‐bis(3‐pyridyl)‐terephthalamide] were hydrothermally synthesized by self‐assembly of cobalt/nickel chloride with a semi‐rigid bis‐pyridyl‐bis‐amide ligand and two aromatic dicarboxylic acids. Single crystal X‐ray diffraction analyses revealed that complexes 1 and 2 are two‐dimensional (2D) coordination polymers containing a one‐dimensional (1D) ribbon‐like Co‐dicarboxylate chain and a 1D zigzag Co‐ L chain. Although the coordination numbers of CoII ions and the coordination modes of two dicarboxylates are different in complexes 1 and 2 , they have a similar 3, 5‐connected {42.67.8}{42.6} topology. In complex 3 , the adjacent NiII ions are linked by L ligands to form a 1D polymeric chain, whereas the 1D chains does not extend into a higher‐dimensional structure due to the ligand NPH with monodentate coordination mode. The adjacent layers of complexes 1 and 2 and the adjacent chains of 3 are further linked by hydrogen bonding interactions to form 3D supramolecular networks. Moreover, the thermal stabilities, fluorescent properties, and photocatalytic activities of complexes 1 – 3 were studied.  相似文献   

7.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

8.
Three new coordination polymers, [Zn(PBDC)(bbbm)0.5]n ( 1 ), [Co(PBDC)(bbbm)]n ( 2 ), and [Cd(PBDC)(bbbm)]n ( 3 ) were prepared via hydrothermal reactions of different metal(II) nitrates with flexible 1,3‐bis(4‐phenoxy)benzenedicarboxylic acid (H2L) and 1,1‐(1,4‐butanediyl)bis(benzimidazole) ligand. All these complexes were fully characterized by elemental analysis, FT‐IR, thermogravimetric analysis (TGA), powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Structure analyses revealed that complex 1 has a 2D→2D twofold interpenetrating framework simplified by a 4‐connected sql net with point symbol (44.62), whereas complexes 2 and 3 are isostructural and exhibit a 2D→2D twofold interpenetrating framework rationalized as a three‐connected hcb net with point symbol (63). Complexes 1 – 3 further expand to 3D supramolecular structures through non‐covalent C–H ··· O interactions. Additionally, the luminescent and magnetic properties of some of these complexes were studied. Complex 3 presents ideal photoluminescent behavior, whereas complex 2 shows antiferromagnetic coupling between the central CoII ions, suggesting its latent application in magnetic material.  相似文献   

9.
In order to investigate the effect of the organic ligands on the structures of coordination polymers, two new cadmium(II) coordination polymers based on the different dicarboxylate ligands, namely [Cd2(bpdc)2(DPNDI)2] · 3H2O · NMF ( 1 ) and [Cd(obb)(DPNDI)] ( 2 ) [H2bpdc = biphenyl‐4,4′‐dicarboxylate, H2obb = 4,4′‐oxybis(benzoic acid), DPNDI = N,N′‐bis(4‐pyridyl)‐1,4,5,8‐naphthalene tetracarboxydiimide, and NMF = N‐methylformamide), were synthesized under solvothermal condition and further characterized. Complex 1 shows a twofold interpenetrated pcu topology. Complex 2 possesses a two‐dimensional (2D) layer structure with –ABCD– stacking sequence. Furthermore, the luminescent properties of complexes 1 and 2 are investigated.  相似文献   

10.
Two new ternary metal coordination polymers (CPs), namely, {[Co2(BTC)(L)]·0.25H2O}n ( 1 ) and [Ag(HIPA)(L)]n ( 2 ) (H4BTC = 1,2,3,4-butanetetracarboxylic acid, H2IPA = isophthalic acid, L = 1,6-bis(5,6-dimethylbenzimidazol-1-yl)hexane) were hydrothermally synthesized and characterized by elemental analysis, infrared spectroscopy, single-crystal X-ray diffraction, and powder X-ray diffraction (PXRD). 1 exhibits unusual 2D network with point symbol {43.63}2{46.66.73}. 2 possesses 1D chain structure which is further extended into a 3D supramolecular network via O–H···O hydrogen-bonding and ππ stacking interactions. 1 and 2 can selectively detect benzaldehyde (BZH), Fe3+ (just 1 ) and Cr2O72− (just 2 ) ions in water via the luminescence quenching process. Furthermore, the photocatalytic activities of two CPs were evaluated for degradation of methylene blue (MB) and methyl violet (MV) under UV irradiation.  相似文献   

11.
Hydrothermal reactions of Co(NO3)2 · 6H2O and Zn(NO3)2 · 6H2O with 1,4‐bis(4‐phenoxy)benzenedicarboxylic acid (H2bcpb) resulted in the formation of the coordination polymers [Zn(bcpb)(Py)]n ( 1 ), and [Co(bcpb)(Py)2]n ( 2 ), respectively. Their structures were studied by single‐crystal and powder X‐ray diffraction methods and further characterized by IR spectroscopy, elemental analyses, and thermogravimetric analyses (TGA). Single X‐ray diffraction analyses revealed that complex 1 has a 1D loop chain. Each repeated unit contains two carboxylate ligands and two SBUs (secondary building units), whereas complex 2 has a 2D 4‐connected sql sheet with point symbol (44.62). The complexes are further expanded to 3D supramolecular structures through non‐covalent bonding interactions. Besides, photoluminescent property of complex 1 was also investigated in the solid state at room temperature.  相似文献   

12.
The cobalt(II) coordination polymers{[Co(L1)(nda)] · 2H2O}n ( 1 ) and [Co(L2)2(nda)]n ( 2 ), [L1 = 1,2‐bis(2‐methylbenzimidazol‐1‐ylmethyl)benzene, L2 = 1,4‐bis(5,6‐dimethylbenzimidazol‐1‐ylmethyl)benzene, H2nda = 2,6‐naphthalenedicarboxylic acid] were hydrothermally synthesized by self‐assembly of cobalt chloride with H2nda and different semi‐rigid bis(benzimidazole) derivatives and characterized by IR spectroscopy, elemental analysis, and X‐ray single‐crystal diffraction. Complex 1 displays a 2D layer with (4,4) topology, complex 2 exhibits a 1D infinite chain structure, both complexes were further packed into 3D and 2D supramolecular architectures by weak hydrogen bonding. The catalytic activities of the complexes for degradation of Congo red in a Fenton‐like process are presented. In addition, the electrochemical and electrocatalytical behavior of CPEs modified with both cobalt complexes (Co‐CPE) were investigated in detail.  相似文献   

13.
Two metal‐organic frameworks, [Co2(ABTC)(bimh)(OH)] · 2H2O ( 1 ) and [Co3(ABTC)2(dimb)4]n ( 2 ) [H3ABTC = 3,4′,5‐azobenzenetricarboxylic acid, bimh = 1,1′‐(1,4‐hexanediy)bis(imidazole), dimb = 1,4‐bis(1H‐imidazol‐1‐yl)benzene], were prepared under solvothermal conditions and structurally characterized. Complex 1 demonstrates a complicated 3D (3,8)‐connected tfz‐d net with (43)2(46.617.85) topology. The framework of 2 can be classified as a rare 3D (3,6,6)‐connected net with the Schäfli symbol of (4.62)2(42.610.83)(44.610.8), and exhibits an intriguing self‐penetrating motif. Meanwhile, the thermal stabilities and magnetic properties for 1 and 2 were also probed.  相似文献   

14.
Three silver(I) coordination polymers namely, [Ag4(L1)2(1, 4‐ndc)2]n ( 1 ) {[Ag(L2)] · (1, 4‐Hndc) · H2O}n ( 2 ), and {[Ag(L3)(H2O)] · (1, 4‐Hndc)}n ( 3 ) [L1 = 1, 3‐bis(benzimidazol‐1‐ylmethyl)benzene, 1, 4‐H2ndc = 1, 4‐naphthalenedicarboxylic acid, L2 = 1, 3‐bis(5, 6‐dimethylbenzimidazole‐1‐ylmethyl)benzene, L3 = 1, 4‐bis(5, 6‐dimethylbenzimidazole)butane], were hydrothermally synthesized and characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR spectroscopy, thermogravimetric and XRPD analysis. Complex 1 displays a 1D tube‐like chain, which is packed into a 3D supramolecular network by π–π stacking interactions. Complex 2 features an infinite 1D linear chain. Complex 3 contains a 1D wave‐like chain, which is extended into a 3D supramolecular network through O–H ··· O hydrogen bonding interactions. Moreover, these coordination polymers exhibit catalytic properties for degradation of methyl orange in Fenton‐like processes.  相似文献   

15.
Two new CoII coordination polymers, [Co(L1)0.5(hip)]n ( 1 ) and [Co(L2)(mip) · 2H2O]n ( 2 ) [L1 = 1,1′‐(1,4‐butanediyl)bis‐1H‐benzimidazole, L2 = 1,3‐bis(5,6‐dimethylbenzimidazol‐1‐yl)‐2‐propanol, H2hip = 5‐hydroxyisophthalic acid, H2mip = 5‐methylisophthalic acid], were synthesized under hydrothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, and X‐ray single‐crystal diffraction. Complex 1 exhibits a 3D supramolecular network constructed with 2D (4,4) layer by O–H ··· O hydrogen bonding. Complex 2 has 1D ladder‐like chains, which are further assembled into a 3D supramolecular framework by π–π stacking interactions. In addition, fluorescence and catalytic properties of compounds 1 and 2 were investigated in solid state.  相似文献   

16.
Two coordination polymers, namely [Zn(L1)(OAc)]·H2O ( 1 ) and [Cd(L1)2] ( 2 ), where L1 = 3,5‐bis(pyridin‐4‐ylmethoxy)benzoic acid, have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction analysis. Complex 1 has a 2D layer structure in which the hydrogen bonds between lattice water molecules and uncoordinated carboxylate oxygen atoms of the ligand L1 in the adjacent layers extend the 2D layer into a 3D supramolecular architecture. The structure of 2 is a 2D (3,5)‐connected net with (3·52)(32·53·64·7) topology. In addition, the luminescent properties of complexes 1 and 2 have been studied in the solid state at room temperature.  相似文献   

17.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

18.
19.
The metal‐organic framework {[Zn2(CAM)(μ2‐OH)(bpp)] · 2H2O}n ( 1 ) [H3CAM = 4‐hydroxypyridine‐2,6‐dicarboxylic acid, bpp = 1,3‐bis(4‐pyridyl)propane], was hydrothermally synthesized and characterized by elemental analyses, infrared spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 presents a three dimensional self‐penetrating 8‐connected framework with the Schläfli symbol 420.53.65. In addition, the fluorescent properties and thermal stability of 1 were discussed as well.  相似文献   

20.
Three new mixed‐ligand coordination polymers of CuII, namely, [Cu(Fbtx)(L1)(H2O)]n ( 1 ), [Cu(Fbtx)0.5(HL2)(H2O)2]n ( 2 ), and {[Cu(Fbtx)1.5(HL3)(H2O)] · H2O}n ( 3 ) [Fbtx = 2,3,5,6‐tetrafluoro‐1,4‐bis(1,2,4‐triazole‐1‐ylmethyl)benenze, H2L1 = terephthalic acid, H3L2 = trimesic acid, NaH2L3 = 5‐sulfoisophthalic acid monosodium salt], were hydrothermally synthesized and structurally characterized by elemental analysis, IR spectra, and single‐crystal and powder X‐ray diffraction techniques. All the complexes have a two‐dimensional (2D) coordination layer structure. Of these, 1 displays a planar 44‐ sql structure whereas both 2 and 3 are highly undulated 63‐ hcb nets. Moreover, their thermal stability and catalytic behaviors in the aerobic oxidation of 4‐methoxybenzyl alcohol were also investigated as well. The results indicate that the benzene dicarboxylate ligands have an effective influence on the structures and catalytic properties of the resulting coordination polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号