首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[Re(CO)6][BF4] reacts with HMPA to form [Re(CO)3(HMPA)3][BF4] (4), whose structure was determined by X-ray crystallography and proves to be a key intermediate in the ligand exchange reaction between three CO and Cp; and may be related to other cations such as [Re(CO)3(H2O)3]+, [Re(CO)3(CH3CN)3]+, [Re(CO)3(DMSO)3]+, obtained by different ways, and important in the field of organometallic radiopharmaceuticals.  相似文献   

2.
The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)2(NO)(N-N)X]+ species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)2(NO)(N-N)X]+ is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)3]+ complexes bearing π-basic OR-type ligands gave the [Re(CO)2(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)2(NO)(N-N)X]+ complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.  相似文献   

3.
Summary Trans-[RhCl(CO)L2] (L = PPh3, AsPh3 or PCy3) react with AgBF4 in CH2Cl2 to give the novel species [Rh-(CO)L2]+ [BF4].nCH2Cl2 (n = 1/2 or 1 1/2) (1–3), which we believe to be stabilised by weak solvent interaction. The corresponding stibine compound cannot be isolated by the same process, instead [Rh(CO)2(SbPh3)3]+ [BF4] (7) is formed when the reaction is carried out in the presence of CO. When reactions designed to prepare [Rh(CO)L2]+ [BF4] are performed in the presence of CO, or [Rh(CO)L2]+ [BF4] complexes are reacted with CO, [Rh(CO)2L2]+ [BF4] (L = PPh3, AsPh3 or PCy3) (4–6) are formed. If Me2CO is used as solvent in the preparation of [Rh(CO)L2]+ [BF4] (L = PPh3 or AsPh3), then the products are the four-coordinate [Rh(CO)L2-(Me2CO)]+ [BF4] (8,9) species. The complexes have been characterised by i.r., 31P and 1H n.m.r. spectroscopy and elemental analyses.  相似文献   

4.
The coordination properties of new types of bidentate phosphane and arsane ligands with a narrow bite angle are reported. The reactions of [{Cp′′′Fe(CO)2}2(μ,η1:1‐P4)] ( 1 a ) with the copper salt [Cu(CH3CN)4][BF4] leads, depending on the stoichiometry, to the formation of the spiro compound [{{Cp′′′Fe(CO)2}231:1:1:1‐P4)}2Cu]+[BF4]? ( 2 ) or the monoadduct [{Cp′′′Fe(CO)2}231:1:2‐P4){Cu(MeCN)}]+[BF4]? ( 3 ). Similarly, the arsane ligand [{Cp′′′Fe(CO)2}2(μ,η1:1‐As4)] ( 1 b ) reacts with [Cu(CH3CN)4][BF4] to give [{{Cp′′′Fe(CO)2}231:1:1:1‐As4)}2Cu]+[BF4]? ( 5 ). Protonation of 1 a occurs at the “wing tip” phosphorus atoms, which is in line with the results of DFT calculations. The compounds are characterized by spectroscopic methods (heteronuclear NMR spectroscopy and IR spectrometry) and by single‐crystal X‐ray diffraction studies.  相似文献   

5.
Four neutral rhenium compounds were examined by electrospray ionization mass spectrometry. Acetonitrile solutions of (Ind)Re(CO)3 (Ind = indenyl) and (Cp)Re(CO)3 (Cp = cyclopentadienyl) gave rise to [Re(CO)3(CH3CN)3]+ ions. This is indicative of a reaction with the solvent, although these compounds do not react with acetonitrile under regular laboratory conditions. In contrast, (Ind)Re(CO)2(butyne) and (Cp)Re(CO)2(butyne) did not lose their aromatic hydrocarbon ligand upon ionization; the predominant product ions generated upon electrospray ionization were [(Ind)Re(CO)(CH3CN)(butyne)]+ and [(Cp)Re(CO)(CH3CN)(butyne)]+, respectively.  相似文献   

6.
Metal Complexes of Biologically Important Ligands. CXVII [1] Addition of the O'Donnell Reagent [Ph2C=NCHCO2Me] to Coordinated, Unsaturated Hydrocarbons of [(C6H7)Fe(CO)3]+, [C7H9Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo), and [(C2H4)Re(CO)5]+. α-Amino Acids with Organometallic Side Chains The addition of [Ph2C=NCHCO2Me] to [(C6H7)Fe(CO)3]+, [(C7H9)Fe(CO)3]+, [(C7H7)M(CO)3]+ (M = Cr, Mo) and [(C2H4)Re(CO)5]+ gives derivatives of α-amino acids with organometallic side chains. The structure of [(η4-C6H7)CH(N=CPh2)CO2Me]Fe(CO)3 was determined by X-ray diffraction. From the adduct of [Ph2C=NCHCO2Me] and [(C7H7)Mo(CO)3]+ the Schiff base of a new unnatural α-amino acid, Ph2C=NCH(C7H7)CO2Me, was obtained.  相似文献   

7.
The reactions of [Re(CO)6]+, [FeCp(CO)2CS]+ and [FeCp(CNPh)3]+ with the metallo nitrile ylides [M{C+=N–C(H)CO2Et}(CO)5] (M = Cr, W) and the chromio nitrile imine [Cr{C+=N–NH}(CO)5] (generated by mono‐α‐deprotonation of the parent isocyanide complexes) to give neutral 5‐metallated 1,3‐oxazolin‐ ( 1 ), 1,3‐thiazolin‐ ( 2 ), imidazolin‐ ( 3 , 4 ), 1,3,4‐oxdiazolin‐ ( 5 ), 1,3,4‐thiadiazolin‐ ( 6 ) and 1,3,4‐triazolin‐2‐ylidene ( 8 ) chromium and tungsten complexes represent the first all‐organometallic versions of Huisgen’s 1,3‐dipolar cycloadditions. The formation of 6 and 8 is accompanied by partial decomposition to (OC)5Cr–C≡N–FeCpL2 {L = CO ( 7 ), CNPh ( 9 )}. The structures of 4a and 5 have been characterized by X‐ray diffraction.  相似文献   

8.
The thermal gas‐phase reactions of rhenium carbonyl complexes [Re(CO)x ]+ (x =0–3) with methane have been explored by using FT‐ICR mass spectrometry complemented by high‐level quantum chemical calculation. While it had been concluded in previous studies that addition of closed‐shell ligands in general decreases the reactivity of metal ions, the current work provides an exception: the previously demonstrated inertness of atomic Re+ towards methane is completely changed upon ligation with CO. Both [Re(CO)]+ and [Re(CO)2]+ bring about efficient dehydrogenation of the hydrocarbon under ambient conditions. However, addition of a third ligand to form [Re(CO)3]+ completely quenches the reactivity.  相似文献   

9.
Chemistry of Hydrogen Isocyanide. VIII. Protonation of a ‘Mobile’ Cyano Ligand: cis-[μ-CNH2)Fe2Cp2(CO)3]X (X = Cl, BF4, PF6, I) . Protonation of the terminal cyano ligand in the complex cis-Na[Fe2(CN)Cp2(CO)3] affords the N-diprotonated produkt [Fe2Cp2(CO)3(μ-CNH2)]+ X? (X = Cl, BF4, PF6, I) exclusively; the structure of the chloride has been determined by X-ray analysis.  相似文献   

10.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

11.
The chemistry of [Re(CO)(NO)L2] fragments (L ? phosphorus donor) was explored. Starting from [Re(CO)5Cl] the synthesis of [Re2Cl2(μ-Cl)2(CO)4(NO)2] ( 1 ) was accomplished via the preparation of [Et4N]2[Re2Cl2(μ-Cl)2(CO)6] and nitrosylation of this compound with [NO][BF4]. Complex 1 was converted to [RecL2(CO)(NO)L2] complexes 2 ( a L = (MeO)3P; b L = (EtO)3P; c L = (i-PrO)3P; d L ? Me3P; e L ? Et3P; f L ? Cy3P) by heating with L in MeCN. In the case of the reaction of L = (MeO)3P, a trisubstitued compound mer-{ReCl2(NO)[P(OMe)3]3} 3 was also obtained. Replacement of the Cl ligands in 2a–e with Me groups was achieved by reacting them with MeLi in Et2O yielding cis, trans-[Re(CO)(NO)Me2L2]complexes 4a–e . Reaction of 2a–e with Li[BHEt3] led to substitution of one Cl by an H ligand with formation of [ReCl(CO)H(NO)L2] compounds 5a–;e , displaying trans-H,NO geometries. The hydride-transfer agent Na[AlH2(OCH2CH2OCH3)2] transformed 2 into the cis-dihydride systems [Re(CO)H2(NO)L2] 6a–f . Reductive carbonylation of 2a–d in the presence of Na/Hg and CO gave pentacoordinate [Re(CO)2(NO)L2] complexes 7b–d , and under comparable conditions the Cl substituents of 2b–f were replaced by tolane using Mg or t-BuLi giving trigonal bipyramidal [Re(CO)(NO)L2(PhC?CPh)] compounds 8b–f . Complexes 5c , 6a , and 8d were characterized by X-ray crystal-structure analysis.  相似文献   

12.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

13.
Thiazyltrifluoride NSF3 and Thiazyldifluoridedimethylamide NSF2NMe2: Ligands in Organometallic Chemistry From the reaction of [Re(CO)5SO2]+AsF6? ( 1 ) and [CpFe(CO)2SO2]+AsF6? ( 6 ) with NSF3 ( 2 ) and NSF2NMe2 ( 4 ) the complexes [Re(CO)5NSF3]+AsF6? ( 3 ), [Re(CO)5NSF2NMe2]+AsF6? ( 5 ), [CpFe(CO)2NSF3]+AsF6? ( 7 ), and [CpFe(CO)2NSF2NMe2]+AsF6? ( 8 ) were obtained. The compounds have been characterised by X-ray crystallography, the ligand properties of 2 and 4 are discussed.  相似文献   

14.
In this study selected bidentate (L2) and tridentate (L3) ligands were coordinated to the Re(I) or Tc(I) core [M(CO)2(NO)]2+ resulting in complexes of the general formula fac-[MX(L2)(CO)2(NO)] and fac-[M(L3)(CO)2(NO)] (M = Re or Tc; X = Br or Cl). The complexes were obtained directly from the reaction of [M(CO)2(NO)]2+ with the ligand or indirectly by first reacting the ligand with [M(CO)3]+ and subsequent nitrosylation with [NO][BF4] or [NO][HSO4]. Most of the reactions were performed with cold rhenium on a macroscopic level before the conditions were adapted to the n.c.a. level with technetium (99mTc). Chloride, bromide and nitrate were used as monodentate ligands, picolinic acid (PIC) as a bidentate ligand and histidine (HIS), iminodiacetic acid (IDA) and nitrilotriacetic acid (NTA) as tridentate ligands. We synthesised and describe the dinuclear complex [ReCl(μ-Cl)(CO)2(NO)]2 and the mononuclear complexes [NEt4][ReCl3(CO)2(NO)], [NEt4][ReBr3(CO)2(NO)], [ReBr(PIC)(CO)2(NO)], [NMe4][Re(NO3)3(CO)2(NO)], [Re(HIS)(CO)2(NO)][BF4], [99Tc(HIS)(CO)2(NO)][BF4], [99mTc(IDA)(CO)2 (NO)] and [99mTc(NTA)(CO)2(NO)]. The chemical and physical characteristics of the Re and Tc-dicarbonyl-nitrosyl complexes differ significantly from those of the corresponding tricarbonyl compounds.  相似文献   

15.
The lowest electronic excited state of the complexes [Ru(2,2′-bipyridine)3]2+, fac-[ClRe (CO)3(2,2′-bipyridine)], and fac-[(pyridine) Re (CO)3(2,2′-bipyridine)]+ can be quenched by methyl viologen, MV2+, N,N′-dimethyl-4,4′-bipyridinium, in fluid solutions. The quenching obeys Stern—Volmer kinetics as deduced from plots of relative luminescence quantum yield vs [MV2+], and the data are consistent with a quenching process that is essentially diffusion controlled. Pulsed laser excitation (18 ns, 354.7 nm frequency tripled Nd: YAG) of the metal complexes in the presence of MV2+ shows that a detectable fraction of the quenching results in net electron transfer to form MV+. The MV+ is detectable by resonance Raman scattering from the trailing portion of the excitation pulse. Excited state electron transfer to MV2+ from a photo-excited complex anchored to SiO2 has also been detected by transient Raman spectroscopy. High surface area SiO2 was functionalized by reaction with 4-[2-(trimethoxysilyl)ethyl]pyridine to give [SiO2]-SiEtpyr. Reaction of [SiO2]-SiEtpyr with [(CH3CN)Re(CO)3(2,2′-bipyridine)]+ then yields [SiO2]-[(SiEtpyr) Re (CO)3 (2,2′-bipyridine)]+. Electron transfer quenching of the photo-excited immobilized Re complex occurs when suspended in CH3CN solutions of MV2+ to yield MV+ as detected by resonance Raman scattering and by lifetime attenuation in the presence of MV2+.  相似文献   

16.
The 1,5-bis(3,5-dimethyl-1-pyrazolyl)-3-thiapentane ligand (bdtp) reacts with [Rh(COD)(THF)2][BF4] to give [Rh(COD)(bdtp)][BF4] ([1][BF4]), which is fluxional in solution on the NMR time scale. Its further treatment with carbon monoxide leads to a displacement of the 1,5-cyclooctadiene ligand, generating a mixture of two complexes, namely, [Rh(CO)2(bdtp)][BF4] ([2][BF4]) and [Rh(CO)(bdtp3N,N,S)][BF4] ([3][BF4]). In solution, [2][BF4] exists as a mixture of two isomers, [Rh(CO)2(bdtp2N,N)]+ ([2a]+) and [Rh(CO)2(bdtp3N,N,S)]+ ([2b]+; major isomer) rapidly interconverting on the NMR time scale. At room temperature, [2][BF4] easily loses one molecule of carbon monoxide to give [3][BF4]. The latter is prone to react with carbon monoxide to partially regenerate [2][BF4]. The ligands 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo) are seen to react with two equivalents of [Rh(COD)(THF)2][BF4] to give the dinuclear complexes [Rh2(bddf)(COD)2][BF4]2 ([4][BF4]2) and [Rh2(bddo)(COD)2][BF4]2 ([5][BF4]2), respectively. In such complexes, the ligand acts as a double pincer holding two rhodium atoms through a chelation involving S and N donor atoms. Bubbling carbon monoxide into a solution of [4][BF4]2 results in loss of the COD ligand and carbonylation to give [Rh2(bddf)(CO)4][BF4]2 ([6][BF4]2). The single-crystal X-ray structures of [3][CF3SO3], [5][BF4]2 and [6][BF4]2 are reported.  相似文献   

17.
The cis-[Mn(CO)4(TePh)2]?, similar to bidentate ligand PhTe(CH2)3TePh, acts as a “chelating metalloligand” for the synthesis of metallic tellurolate compounds. The reaction of cis[Mn(CO)4(TePh)2]? with BrMn(CO)5 in THF leads to a mixture of products[(CO)3,BrMn(μ-TePh)2Mn(CO)4]? (1) and Mn2(μ-TePh)2(CO)g (2). Complex 1 crystallizes in the triclinic space group Pl? with a = 11.309(3) Å, b = 14.780(5) Å, c = 19.212(6) Å, a = 76.05(3)° β = 72.31(3)°, γ = 70.41(3)° V = 2848(2) Å3, Z = 2. Final R = 0.034 and Rw = 0.035 resulting from refinement of 10021 total reflections with 677 parameters, Dropwise addition of (MeTe)2 to a solution of [Me3O][BF4] in CH3CN leads to formation of [Me2TeTeMe][BF4], a potential MeTe+ donor ligand. In contrast to oxidative addition of diphenyl ditelluride to [Mn(CO)s]? to give cis-[Mn(CO)4(TePh)2]? which was thermally transformed into [(CO)3Mn(μ-TePh)3Mn(CO)3]?, reaction of [Mn(CO)5]?with [Me2TeTeMe]+ proceeded to give the monomeric species MeTeMn(CO)5 as initial product which was then dimerized into Mn2(μ-TeMe)2(CO)g (4).  相似文献   

18.
A complex comprising one [Re(CO)3]+ unit and a phthalocyanine (Pc) ligand ( Re1Pc ) is shown to function as a photo-induced CO-releasing molecule (photoCORM) in the presence of O2 and a coordinative solvent under irradiation with red light, which can deeply penetrate living tissues. Transient absorption spectroscopic measurements indicate very short excited-state lifetimes and ultrafast intersystem crossing for Re1Pc and Re2Pc , which contains two [Re(CO)3]+ units. The excited-state properties are ascribed to efficient spin–orbit coupling and large Franck–Condon factors originating from the complexes’ distorted structures, that is, unsymmetric coordination of [Re(CO)3]+ unit(s), one of which was confirmed by single-crystal X-ray analysis of a symmetrically substituted Pc with two [Re(CO)3]+ units. Re1Pc represents a promising red-light-driven photoCORM that can be applied in biological environments or therapeutic applications.  相似文献   

19.
Synthesis and Structures of the Dinuclear Nitrido Complexes [(Me2PhP)3(MeCN)ClRe≡N–MCl5] with M = Sn and Zr The water sensitive complexes [(Me2PhP)3(MeCN)ClRe≡N–MCl5] (M = Sn ( 1 ) und Zr ( 2 )) are obtained in dichloromethane from [ReNCl2(PMe2Ph)3] and the acetonitrile adducts of SnCl4 or ZrCl4. The compounds crystallize as dichloromethane solvate isotypically with [(Me2PhP)3(MeCN)ClRe≡N–TiCl5] · CH2Cl2 in the space group P21/n. From toluene crystallize monoclinic crystals of 1 · MeCN · C7H8. In the diamagnetic complexes 1 and 2 an anion [MCl5] coordinates to the nitrido ligand of the cationic complex [ReNCl(MeCN)(PMe2Ph)3]+. The resulting nitrido bridges Re≡N–M are almost linear and asymmetric with Re–N = 169.5 pm, Sn–N = 230.1 pm and Re–N–Sn = 164.5° for 1 and Re–N = 168.4 pm, Zr–N = 237.2 pm and Re–N–Zr = 165.6° for 2 . The phosphine ligands at the Re atom are in a meridional arrangement.  相似文献   

20.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号