首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the salt 1‐methylpiperazine‐1,4‐diium bis(dihydrogen phosphate), C5H13N22+·2H2PO4, (I), and the solvated salt 2‐(pyridin‐2‐yl)pyridinium dihydrogen phosphate–orthophosphoric acid (1/1), C10H9N2+·H2PO4·H3PO4, (II), the formation of O—H...O and N—H...O hydrogen bonds between the dihydrogen phosphate (H2PO4) anions and the cations constructs a three‐ and two‐dimensional anionic–cationic network, respectively. In (I), the self‐assembly of H2PO4 anions forms a two‐dimensional pseudo‐honeycomb‐like supramolecular architecture along the (010) plane. 1‐Methylpiperazine‐1,4‐diium cations are trapped between the (010) anionic layers through three N—H...O hydrogen bonds. In solvated salt (II), the self‐assembly of H2PO4 anions forms a two‐dimensional supramolecular architecture with open channels projecting along the [001] direction. The 2‐(pyridin‐2‐yl)pyridinium cations are trapped between the open channels by N—H...O and C—H...O hydrogen bonds. From a study of previously reported structures, dihydrogen phosphate anions show a supramolecular flexibility depending on the nature of the cations. The dihydrogen phosphate anion may be suitable for the design of the host lattice for host–guest supramolecular systems.  相似文献   

2.
The title compounds, 2‐chloroanilinium dihydrogen phosphate (2CADHP) and 4‐chloroanilinium dihydrogen phosphate (4CADHP), both C6H7NCl+·H2PO4, form two‐dimensional supramolecular organic–inorganic hybrid frameworks. In 2CADHP, the dihydrogen phosphate anions form a double‐stranded anionic chain generated parallel to the [010] direction through O—H...O hydrogen bonds, whereas in 4CADHP they form a two‐dimensional supramolecular net extending parallel to the crystallographic (001) plane into which the cations are linked through strong N—H...O hydrogen bonds.  相似文献   

3.
Four tripodal ligands L1–4 derived from 4,5‐diazafluoren‐9‐one were synthesized. L1–2 formed by the reaction of 4,5‐diazafluoren‐9‐oxime with 1,3,5‐tris(bromomethyl)benzene, and 1,1,1‐tris(p‐tosyloxymethyl)propane, respectively and L3–4 formed by the condensation of 9‐(4‐hydroxy)phenylimino‐4,5‐diazafluorene with 1,3,5‐tris(bromomethyl)benzene, and 1,1,1‐tris(p‐tosyloxymethyl)propane, respectively. Four trinuclear complexes [(bpy)6Ru3L1–4](PF6)6 ( Ru‐L1–4 ) were obtained by reaction of Ru(bpy)2Cl2 · 2H2O with ligands L1–4. The photophysical behaviors of these complexes were investigated by UV/Vis absorption and emission spectrometry. The complexes display metal‐to‐ligand charge transfer absorptions at 441–445 nm and emissions at 571–578 nm. Cyclic voltammetry data of the complexes show one RuII‐centered oxidation and three successive ligand‐centered reductions.  相似文献   

4.
The reaction of 2‐aldehyde‐8‐hydroxyquinoline, histamine, and YbX3 · 6H2O (X = NO3, ClO4) affords two ytterbium complexes [Yb(nma)2] · ClO4 · 2CH2Cl2 ( 1 ) and [Yb(nma)(NO3)2(DMSO)] · CH3OH ( 2 ) (Hnma = N‐(2‐(8‐hydroxylquinolinyl)methane(2‐(4‐imidazolyl)ethanamine))). The crystal structures were determined by X‐ray diffraction and it has been revealed that the anions have played important role in the assembly. In the case of 1 , the Yb3+ ions are completely encapsulated by two nma ligands with uncoordinated perchlorate anion balancing the positive charge. In the case of 2 , the Yb3+ ions are ligated by the ligand, oxygen atoms of the nitrate ion, and DMSO. Both complexes exhibit essential NIR luminescence of Yb3+ ions.  相似文献   

5.
Two new tetranuclear NiII complexes, [Ni4(L1)2(N3)4(MeOH)2]·CH3COCH3 (1) and [Ni4(L2)2(N3)4(MeOH)2]·4CH3COCH3 (2) , were synthesized using NiCl2·6H2O, NaN3, and asymmetric salamo‐based ligands H2L1 and H2L2, respectively. The structural characterization was made by elemental analyses, infrared (IR) and ultraviolet‐visible (UV‐vis) spectra, and X‐ray diffraction analyses. The results of X‐ray diffraction analyses show that the NiII atoms in complexes 1 and 2 are distorted octahedral geometries. Interestingly, the degree of distortion of the ligands in complexes 1 and 2 is different, which indicates that the interaction of NiII ions on different ligands is different. Meanwhile, the investigation of molecular packing by employing the Hirshfeld surface analysis exhibits that the percentages of C–H/H–C, O–H/H–O, and H–H/H–H contacts of the complex 1 (or 2 ) are calculated to be 17.7%, 7.9%, and 53.7% (or 18.8%, 13.8%, and 52.5%), respectively, where the H–H/H–H contacts have the characteristics of strong contacts whereas the O–H/H–O hydrogen bonds are considerably weak, and the studies on fluorescence properties further confirm the NiII atoms have different binding abilities to the different ligands.  相似文献   

6.
In the title compound, disodium cobalt tetrakis­(dihydrogen­phosphate) tetrahydrate, the CoII ion lies on an inversion centre and is octahedrally surrounded by two water molecules and four H2PO4 groups to give a cobalt complex anion of the form [Co(H2PO4)4(OH2)]2?. The three‐dimensional framework results from hydrogen bonding between the anions. The relationship with the structures of Co(H2PO4)2·2H2O and K2CoP4O12·5H2O is discussed.  相似文献   

7.
Three tripodal ligands H3L1–3 containing imidazole rings were synthesized by the reaction of 1,10‐phenanthroline‐5,6‐dione with 1,3,5‐tris[(3‐formylphenoxy)methyl]benzene, 1,3,5‐tris[(3‐formylphenoxy)methyl]‐2,4,6‐trimethylbenzene, and 2,2′,2"‐tris[(3‐formylphenoxy)ethyl]amine, respectively. Trinuclear RuII polypyridyl complexes [(bpy)6Ru3H3L1–3](PF6)6 were prepared by the condensation of Ru(bpy)2Cl2 · 2H2O with ligands H3L1–3. The pH effects on the UV/Vis absorption and fluorescence spectra of the three complexes were studied, and ground‐ and excited‐state ionization constants of the three complexes were derived. The three complexes act as “off‐on‐off” fluorescence pH switch through protonation and deprotonation of imidazole ring with a maximum on‐off ratio of 5 in buffer solution at room temperature.  相似文献   

8.
4‐Amino‐trans‐azobenzene {or 4‐[(E)‐phenyl­diazen­yl]aniline} can form isomeric salts depending on the site of protonation. Both orange bis{4‐[(E)‐phenyl­diazen­yl]anilinium} hydrogen phos­phate, 2C12H12N3+·HPO42−, and purple 4‐[(E)‐phenyl­diazen­yl]­anilinium dihydrogen phosphate phosphoric acid solvate, C12H12N3+·H2PO4·H3PO4, (II), have layered structures formed through O—H⋯O and N—H⋯O hydrogen bonds. Additionally, azobenzene fragments in (I) are assembled through C—H⋯π inter­actions and in (II) through π–π inter­actions. Arguments for the colour difference are tentatively proposed.  相似文献   

9.
Reactions of new unsymmetrical pyridyl‐ and imidazoyl‐containing tripodal ligand, 3‐(1H‐imidazol‐1‐yl)‐N,N‐bis(2‐pyridylmethyl)propan‐1‐amine ( L ), with varied silver(I) salts result in formation of three supramolecular architectures [Ag2L2](BF4)2·H2O ( 1 ), [Ag2L2](ClO4)2·H2O ( 2 ) and [Ag3L2](CF3SO3)3 ( 3 ). All the structures were established by single‐crystal X‐ray diffraction analysis. In the solid state, three complexes consist of one‐dimensional infinite chains, in which the conformation and the bridging mode of L for complexes 1 and 2 are the same but 3 different. There are Ag···Ag and π‐π interactions in 3 . The results imply that the shape and size of the anion have great impact on the structure of the complexes. The complexes were also characterized by electrospray mass spectrometry.  相似文献   

10.
Crystals of the title compounds, namely 1‐(diaminomethylene)thiouron‐1‐ium perchlorate, C2H7N4S+·ClO4, 1‐(diaminomethylene)thiouron‐1‐ium hydrogen sulfate, C2H7N4S+·HSO4, 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen phosphate, C2H7N4S+·H2PO4, and its isomorphic relative 1‐(diaminomethylene)thiouron‐1‐ium dihydrogen arsenate, C2H7N4S+·H2AsO4, are built up from a nonplanar 1‐(diaminomethylene)thiouron‐1‐ium cation and the respective anion linked together via N—H...O hydrogen bonds. Both arms of the cation are planar, but they are twisted with respect to one another around the central N atom. Ionic and extensive hydrogen‐bonding interactions join oppositely charged units into layers in the perchlorate, double layers in the hydrogen sulfate, and a three‐dimensional network in the dihydrogen phosphate and dihydrogen arsenate salts. This work demonstrates the usefulness of 1‐(diaminomethylene)thiourea in crystal engineering for the formation of supramolecular networks with acids.  相似文献   

11.
The title salt, C13H12N3+·H2PO4, contains a nonplanar 2‐(2‐aminophenyl)‐1H‐benzimidazol‐3‐ium cation and two different dihydrogen phosphate anions, both situated on twofold rotation axes in the space group C2. The anions are linked by O—H...O hydrogen bonds into chains of R22(8) rings. The anion chains are linked by the cations, via hydrogen‐bonding complementarities and electrostatic interactions, giving rise to a sheet structure with alternating rows of organic cations and inorganic anions. Comparison of this structure with that of the pure amine reveals that the two compounds generate characteristically different sheet structures. The anion–anion chain serves as a template for the assembly of the cations, suggesting a possible application in the design of solid‐state materials.  相似文献   

12.
To realize highly selective relay recognition of Fe3+ and H2PO4- ions, a simple benzimidazole-based fluorescent chemosensor(L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe3+ in H2O/DMSO(1:1, v/v) solutions. The in situ-generated L-Fe3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe3+ displacement approach. The detection limits of sensor L to Fe3+ and L-Fe3+complex to H2PO4- anion were estimated to be 1.0 × 10-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate anions with Fe3+, and H2PO4-, in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe3+ and H2PO4- anion detection in aqueous media.  相似文献   

13.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

14.
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the ν4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the ν2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.  相似文献   

15.
Six complexes, [VO(L1-H)2]?·?5H2O (1), [VO(OH)(L2,3?H)(H2O)]?·?H2O (2,3), [VO(OH)(L4,5?H)(H2O)]?·?H2O (4,5), [VO(OH)(L6?H)(H2O)]?·?H2O (6), were prepared by reacting different derivatives of 5-phenylazo-6-aminouracil ligands with VOSO4?·?5H2O. The infrared and 1H NMR spectra of the complexes have been assigned. Thermogravimetric analyses (TG, DTG) were also carried out. The data agree quite well with the proposed structures and show that the complexes were finally decomposed to the corresponding divanadium pentoxide. The ligands and their vanadyl complexes were screened for antimicrobial activities by the agar-well diffusion technique using DMSO as solvent. The minimum inhibitory concentration (MIC) values for 14 and 6 were calculated at 30°C for 24–48?h. The activity data show that the complexes are more potent antimicrobials than the parent ligands.  相似文献   

16.
Three ZnII and CdII complexes with Y‐shaped dicarboxylate ligands, namely [Zn(L1)(2,2′‐bpy)2(H2O)] · 2H2O ( 1 ), [Zn(L1)(bpp)(H2O)] ( 2 ), and [Cd(L1)(H2O)] · H2O ( 3 ) [H2L1 = N‐phenyliminodiacetic acid, 2,2′‐bpy = 2,2′‐bipyridine, bpp = 1,3‐bis(4‐pyridyl)propane] were synthesized and characterized by elemental analysis, IR spectroscopy single‐crystal X‐ray diffraction, and thermogravimetric analyses. Compound 1 shows an hydrogen‐bonded 2D network, whereas compound 2 is an infinite 1D wavy chain structure, though O–H ··· O hydrogen‐bonded to form a 2D network. Compound 3 displays a 2D uninodal 3‐connected Shubnikov plane net with the point symbol of (4.82). Moreover, the solid‐state such as thermal stabilities and fluorescence properties of 1 – 3 were also investigated.  相似文献   

17.
Three supramolecular complexes [Zn(HL1 )2(H2O)2(ZnCl4)2] (1), [Cu(L2 )2Cl2] (2), and [Zn(L3 )Cl2] (3) have been synthesized and characterized by single crystal X-ray diffraction analysis (L1 = 3,5-di(2-pyridyl)-4-amino-1,2,4-triazole, L2 = 3,5-di(2-pyridyl)-1,2,4-triazole, and L3 = 2-pyridinecarboxylic acid (pyridin-2-ylmethylene)-hydrazide). In 1, anion–π interactions between Cl? and the π-systems of L1 are observed and anion–π, hydrogen bonding and π–π stacking interactions link the two complex units of [Zn(HL1 )2(H2O)2]4+ and [ZnCl4]2? to form a 3-D supramolecular network. In 2, π–π stacking interactions between aromatic rings of 1,2,4-triazole and pyridine rings are observed; in 3, hydrogen bonding of Cl ··· H–N and π–π stacking interactions between parallel pyridine rings of L 3 are observed. The mechanisms of rearrangement reactions of L to L1 L3 are discussed. The fluorescent properties for solid 1 and 3 are also investigated.  相似文献   

18.
The cation of the title structure [systematic name: (5α,6α)‐6‐hydroxy‐7,8‐didehydro‐4,5‐epoxy‐3‐methoxy‐17‐methylmorphinanium dihydrogen phosphate hemihydrate], C18H22NO3+·H2PO4·0.5H2O, has a T‐shaped conformation. The dihydrogen phosphate anions are linked by O—H...O hydrogen bonds to give an extended ribbon chain. The codeine cations are linked together by O—H...O hydrogen bonds into a zigzag chain. There are also N—H...O bonds between the two types of hydrogen‐bonded units. Addditionally, they are connected to one another via O...H—O—H...O bridging water molecules. The asymmetric unit contains two codeine hydrogen cations, two dihydrogen phosphate anions and one water molecule. This study shows that the water molecules are firmly bound within a complex three‐dimensional hydrogen‐bonded framework.  相似文献   

19.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry.  相似文献   

20.
The pendant‐armed ligands L1 and L2 were synthesized by N‐alkylation of the four secondary amine groups of the macrocyclic precursor L using o‐nitrobenzylbromide (L1) and p‐nitrobenzylbromide (L2). Nitrates and perchlorates of CuII, NiII and CoII were used to synthesize the metal complexes of both ligands and the complexes were characterized by microanalysis, MS‐FAB, conductivity measurements, IR and UV‐Vis spectroscopy and magnetic studies. The crystal structures of L1, [CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN, [CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH and [NiL2](ClO4)2·3CH3CN·H2O were determined by single crystal X‐ray crystallography. These structural analysis reveal the free ligand L1, three mononuclear endomacrocyclic complexes {[CuL1](ClO4)2·CH3CN·H2O, [CuL2](ClO4)2·6CH3CN and [NiL2](ClO4)2·3CH3CN·H2O} and one binuclear complex {[CuL2][Cu(NO3)4]·5CH3CN·0.5CH3OH} in which one of the metals is in the macrocyclic framework and the other metal is outside the ligand cavity and coordinated to four nitrate ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号