首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zusammenfassung Die Kristallstruktur von Li6[Si2O7] wird mit Hilfe von Patterson-Projektionen und dreidimensionalen Fourier-Synthesen sowie nach der Methode der kleinsten Quadrate bestimmt. Die Gitterparameter der tetragonalen Elementarzelle (P421m-D 2d 3 ) betragen:a=7,715;c=4,88 Å. Die Verbindung zählt zu den Sorosilicaten mit isolierten [Si2O7]-Gruppen. Die Lithiumionen weisen gegenüber Sauerstoff die Koordinationszahlen 4 und 5 auf. Als mittlere Abstände [Å] wurden ermittelt: Si-O : 1,64 Li-O : 1,95 [4] und 2,18 [5].
The crystal structure ofLi 6[Si 2 O 7]
The crystal structure of Li6[Si2O7] has been determined by means of Patterson projections, 3-dimensional Fourier syntheses and the least-squares method. The lattice parameters of the tetragonal unit cell (P421m-D 2d 3 ) area=7.715 andc=4.88 Å. The compound belongs to the sorosilicates having isolated [Si2O7]-groups. The coordination numbers of the lithium ions are 4 and 5. The average interatomic distances were found to be: Si-O : 1,64 Å; Li-O : 1.95 [4] and 2.18 [5] Å.


Mit 3 Abbildungen  相似文献   

2.
The crystal structure of dilithiumzine orthogermanate, Li2ZnGeO4, has been determined and refined byFourier syntheses and least-squares, using three dimensional single-crystal data. A finalR-value of 5.7% was obtained. The monoclinic unit cell (Pn–Cs 2) with the dimensionsa=6.40,b=5.45,c=5.04 Å and =90.2° contains two formula units Li2ZnGeO4. The crystal structure is built up by [GeO4] tetrahedra, which are linked together by [LiO4] and [ZnO4] tetrahedra. The average interatomic distances are found to be: Ge–O=1.77, Li–O=2.01 and Zn–O=1.93 Å.  相似文献   

3.
Preparation and Crystal Structure of CrSO4 · 3 H2O Evaporating a solution of Cr2+ in dilute sulphuric acid at 70°C light blue crystals of CrSO4 · 3 H2O were grown. Its x-ray powder diffraction pattern is quite similar to that of CuSO4 · 3 H2O. The crystal structure refinement of CrSO4 · 3 H2O (space group Ce, a = 5.7056(8) Å, b = 13.211(2) Å, c = 7.485(1) Å, β = 96.73(1)°, Z = 4) from single crystal data, using the parameters of the copper compound as starting values, results in a final R-value of R = 3.8%. The surrounding of the Cr2+ ion can be described as a strongly elongated octahedron. The basal plane of the CrO6-octahedron consists of three hydrate oxygen atoms and one sulphate oxygen atom. The two more distant axial oxygen atoms also belong to sulphate groups. Thus they are forming chains of alterning CrO6-octahedra and SO4-tetrahedra along [110] and [1–10] linked via common corners. These chains are connected via sulphate groups and by bridging hydrogen bonds to a 3-dimensional network.  相似文献   

4.
Concerning Polymetaarsenites. Preparation and Crystal Structure of BaAs2O4. H2O BaAs2O4·H2O was prepared by hydrothermal reaction of BaO with As2O3 at a temperatur of 200°C. An X-ray structural analysis demonstrated that the phase contains polymetaarsenite anions [As4O84?]n, which adopt vierer single chains in the lattice. The relationship between the conformation of metaarsenite chains and cation size is discussed.  相似文献   

5.
The crystal structure of Cd2Ge7O16 has been determined by means of three-dimensional single-crystal data. A finalR-value of 6.3% was obtained by least squares refinement based on 230 observed reflexions. The tetragonal unit cell with the lattice parametersa=11.31 andc=4.63 Å contains two formula units Cd2Ge7O16. The compound is built up by [GeO4]-tetrahedra and [GeO6]-octahedra forming a three-dimensional framework with the Cd atoms located in the cavities. The average interatomic distances are found to be: Ge–O=1.74 (tetrahedra), 1.89 (octahedra) and Cd–O=2.36 Å.

Mit 1 Abbildung  相似文献   

6.
Preparation and Crystal Structure of the Thiotellurites BaTeS3·2H2O and (NH4)2TeS3 The new compounds BaTeS3 · 2 H2O and (NH4)2TeS3 have been prepared and their structures determined. According to these the anion of the trithiotelluric acid in these compounds represents a distorted trigonal TeS?pyramid. The Te? S-distances are 2.34–2.36 Å. Crystallographic data see ?Inhaltsübersicht”?.  相似文献   

7.
8.
Synthesis and Crystal-Structure of Na2Mn3O7 Single crystals of Na2Mn3O7 have been grown hydrothermally applying high oxygen pressure (p = 2 kbar). The new compound cystallizes triclinic; space group P1 ; a = 6.636(6) Å, b = 6.854(6) Å, c = 7.548(6) Å, α = 105.76(6)°, β = 106.86(6)°, γ = 111.60(6)°; Z = 2. The crystal structure has been solved and refined to R = 7.9% and Rw = 6.2% (diffractometer data, 1044 independent reflexions). The crystal structure consists of Mn3O72? anions with manganese coordinated octahedrally by oxygen. These layered anions are hold together by Na+ ions (coordination numbers 5 and 6).  相似文献   

9.
Preparation and Crystal Structure of Rb2Sn3S7 · 2 H2O and Rb4Sn2Se6 Rb2Sn3S7 · 2 H2O has been prepared by hydrothermal reaction of SnS2 and Rb2CO3 in an with H2S saturated aqueous solution at 190°C. The crystal lattice contains chain anions [Sn3S72?] which display both SnS4 tetrahedra and SnS6 octahedra. Methanolothermal reaction of SnCl2 with Se and Rb2CO3 at 145°C leads to the formation of Rb4Sn2Se6 which contains edge-bridged bitetrahedral [Sn2Se6]4? anions.  相似文献   

10.
Preparation and Crystal Structure of Rb2Sb4S7 The first thioantimonite of rubidium has been synthesized and its crystal structure determined. The substance crystallizes triclinic with spacegroup P1 . The lattice constants are a = 968.0(5) pm, b = 1193.4(5) pm, c = 723.1(5) pm, α = 87.68(5)°, β = 101.39(5)° and γ = 102.66(5)°. There are two formula units in the unit cell.  相似文献   

11.
Preparation and Crystal Structure of Cs2Sb4S7 The first thioantimonite of Cesium has been synthesized and its crystal structure determined. The substance crystallizes monoclinic with spacegroup P21/c. The lattice constants are a = 1111.2(5) pm, b = 1227.1(5) pm, c = 1163.7(5) pm and ß = 97.60(5)°. There are four formula units in the unit cell. Sb–S chains are formed by trigonal SbS3 pyramids and ψ-trigonal SbS4 bipyramids.  相似文献   

12.
The crystal structure of the compound Li3Zn0.5GeO4 has been determined and refined by means of three-dimensionalFourier syntheses and least squares. Li3Zn0.5GeO4 crystallizes orthorhombic with space groupD 2h 16 -Pmnb (No. 62) and the lattice parametersa=6.29,b=10.74 andc=5.17 Å. The crystal structure consists of isolated [GeO4] tetrahedra, which are linked together by [(Li,Zn)O4] tetrahedra analogous to Li3PO4(h). An additional eight-fold position is partly occupied by two lithium atoms. The occupancy of this position may vary according to the observed range of composition, which lies between Li3.8Zn0.1GeO4 and Li2.6Zn0.7GeO4.
  相似文献   

13.
Syntheses and Crystal Structures of Rb4Br2O and Rb6Br4O In the quasi‐binary system RbBr/Rb2O, the addition compounds Rb4Br2O and Rb6Br4O are obtained by solid state reaction of the boundary components RbBr and Rb2O. Crystals of red‐orange Rb4Br2O as well as of orange Rb6Br4O decompose immediately when exposed to air. Rb4Br2O (Pearson code tI14, I4/mmm, a = 544.4(6) pm, c = 1725(2) pm, Z = 2, 175 symmetry independent reflections with Io > 2σ(I), R1= 0.0618) crystallizes in the anti K2NiF4 structure type; Rb6Br4O (Pearson code hR22, R3c, a = 1307.8(3) pm, c = 1646.6(5) pm, Z = 6, 630 symmetry independent reflections with Io > 2σ(I), R1 = 0.0759) in the anti K4CdCl6 structure type. Both structures contain characteristic ORb6‐octahedra and can be understood as expanded perovskites, following the general systematics of alkaline metal oxide halides.  相似文献   

14.
Synthesis and Crystal Structure of Cs8P8O24 · 8H2O Cs8P8O24 · 8H2O was obtained from Na8P8O24 · 6H2O by cation exchange. Crystal growth was achieved by applying gel techniques (agar agar). The crystal structure (P1 ; a = 766.6(8); b = 1 156.9(9); c = 1 163.4(9) pm; α = 100,2(1)°; β = 106.5(2)°; γ = 92.2(1)°; Z = 1; 4 099 unique diffractometer data; R = 0.051; R(w) = 0.037) contains cyclo-octaphosphate anions with point symmetry C2h. The cesium atoms are coordinated irregularily by eight and ten oxygen atoms, respectively. The threedimensional linkage of the P8O248?-rings is established via bonds to cesium atoms and hydrogen bonds Provided by H2O molecules.  相似文献   

15.
On the Preparation and Crystal Structure of Rb2Sb4S7 Rb2Sb4S7 was prepared by methanolothermal reaction of Rb2CO3 with Sb2S3 at a temperature of 140°C. An X-ray structural analysis demonstrated that the compound contains polythioantimonate(III) anions (Sb4S72?)n, for which the basic element is a ψ-trigonal (SbS4)-bipyramid. Edge bridged SbS4 polyhedra build vierer single chains (Sb4S84?)n, which are linked via two symmetry related S atoms with neighbouring chains so that an (Sb4S72?)n sheet is formed.  相似文献   

16.
17.
On the Low Temperature Modifications of Ag6Si2O7 and Ag6Ge2O7 – Synthesis, Crystal Structure, and Comparison of Ag? Ag Distances For the first time, single crystals of Ag6Si2O7 and Ag6Ge2O7 have been obtained by solid state reactions of the binary oxides at temperatures of 350°C while applying oxygen pressures of 700 bar. According to the results of X-ray crystal structure determinations both compounds crystallize isostructural in P21 (Ag6Si2O7: a = 5.3043(5) Å, b = 9.7533(7) Å, c = 15.9283(13) Å, β = 91.165(8)°, 3881 independent reflections, R1 = 3.3%, wR2 = 7.2%; Ag6Ge2O7: a = 5.3713(4) Å, b = 9.9835(8) Å, c = 16.2249(14) Å, β = 90.904(8)°, 2111 independent reflections, R1 = 4.3%, wR2 = 6.0%, Z = 4). The crystal structures contain two independent M2O76? anions, one in a staggered, and the other in an ecliptic conformation. The cationic partial structure may be described as a distorted bcc arrangement of Ag+ and M4+. Comparison of the structures with respect to the Ag? Ag separations reveals the latter to be probably due to intrinsic d10–d10 bonding interactions as far as the range of 2.89 Å to 3.25 Å is considered.  相似文献   

18.
Preparation and Crystal Structure of Ag2O3 The novel compound Ag2O3 was obtained by anodic oxidation of aqueous solutions of AgBF4, AgClO4, and AgPF6. According to single crystal investigations Ag2O3 belongs to the orthorhombic crystal system (Fdd2; a = 1286.9(1), b = 1049.0(1), c = 366.38(5) pm; Z = 8; 309 independent diffractometer data; R = 1.2%). Ag2O3 is isostructural to Au2O3 and contains silver square-planarly coordinated by oxygen. The AgO4 groups are connected via common vertices forming a 3-d framework.  相似文献   

19.
The preparation of Tl2O and its crystal structure is discussed. By FOURIER methods for a monoclinic unit cell(aM = 6.082, bM = 3.520, cM = 13.24 Å, β = 108.2°, Z = 4, space group C2h3) the determined atomic parameters can be transformed into the trigonal system by the assumption of special oxygen positions (space group No. 166–R3 m). Correspondingly the Tl2O crystal structure may be described as a threefold polytype form of the anti CdJ2 type (aH = 3,516 cH = 37.84 Å; c/a = 10.76, Z = 6, mol. vol. = 40.7 cm3; dx = 10.44, dpyk = 10.4 g m?).  相似文献   

20.
Synthesis and Crystal Structure of the known Zintl Phases Cs3Sb7 and Cs4Sb2 Cs3Sb7 and Cs4Sb2 were synthesized from the elements and their crystal structures were determined on the basis of single crystal x‐ray data. Cs3Sb7 crystallizes in the monoclinic system with space group P21/c (a = 1605.7(1) pm, b = 1571.1(1) pm, c = 2793.9(2) pm, β = 96.300(2)°, Z = 16) and contains anions Sb73–. In the structure of Cs4Sb2 (orthorhombic, space group Pnma, a = 1598.5(3) pm, b = 631.9(2) pm, c = 1099.5(2) pm, Z = 4) dumbbells Sb24– are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号