首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrothermal process has been employed to synthesize titanium oxide (TiO2) bottle brush. The nanostructured bottle brushes with tetragonal nanorods of ~75 nm diameter have been synthesized by changing the nature of the precursors and hydrothermal processing parameters. The morphological features and structural properties of TiO2 films were investigated by field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron spectroscopy, Fourier transform Raman spectroscopy, and X-ray photoelectron spectroscopy. The influence of such nanostructures on the performance of dye-sensitized solar cells (DSSCs) is investigated in detail. The interface and transient properties of these nanorods and bottle brush-based photoanodes in DSSCs were analyzed by electrochemical impedance spectroscopic measurements in order to understand the critical factors contributing to such high power conversion efficiency. Surface area of sample was recorded using Brunauer–Emmett–Teller measurements. It is found that bottle brush provides effective large surface area 89.34 m2 g?1 which is much higher than TiO2 nanorods 63.7 m2 g?1. Such effective surface area can facilitate the effective light harvesting, and hence improves the dye adsorption and the photovoltaic performance of DSSCs, typically in short-circuit photocurrent and power conversion efficiency. A best power conversion efficiency of 6.63 % has been achieved. We believe that the present device performance would have wide interests in dye-sensitized solar cell research.  相似文献   

2.
In this paper, TiO2 particles (~30 nm) modified with Gd2O3-coating layer (~2 nm) for dye-sensitized solar cells (DSSCs) were fabricated via the hydrothermal method. Among the solar cells based on the Gd3+-doped TiO2 photoanodes, the optimal conversion efficiency was obtained from the 0.025Gd3+-modified TiO2-based cell, with a 17.7% improvement in the efficiency as compared to the unmodified one (7.18%). This enhancement was probably due to the improved UV radiation harvesting via a down-conversion luminescence process by Gd3+ ions, enhancement of visible light absorption and improved dye loading capacity. In addition, after Gd modification, a thin coating could be formed on the TiO2 nanoparticles, which worked as an energy barrier and resulted in a lower charge recombination.  相似文献   

3.
Three-dimensional (3D) hierarchical rutile TiO2 microspheres composed of nanorods with diameter of several-tens of nanometers, with different morphologies and with average size ranging from 1.3 to 1.8 μm, were successfully synthesized through a surfactant-free solvothermal route. The effects of the solvents n-hexane, chloroform, and cyclohexane on the microstructures of 3D hierarchical TiO2 nanostructures were investigated. Results of scanning electron microscopy showed that 3D sea-urchin like hierarchical TiO2 composed of nanorods with a diameter of ~10 nm can only be prepared in the cyclohexane-water system. The growth mechanism of 3D sea-urchin like hierarchical TiO2 composed of numerous nanorods was further examined and found to differ from the well-known “growth → assembly” mode. The effects of surface tension and polarity of solvents on the morphology and crystal strength of 3D hierarchical TiO2 nanostructure were also investigated. In addition, the prepared 3D sea-urchin like hierarchical TiO2 showed highest photocatalytic activity compared with other 3D hierarchical TiO2 nanostructures in this study and Degussa P25 for the degradation of Rhodamine B solution under UV light irradiation, which could be attributed to its special hierarchical superstructure, the increase of surface catalytic sites and its special composition units.  相似文献   

4.
Mixed amorphous and anatase-type titania particles were synthesized using non-ionic triblock copolymer as surfactant template and TiOSO4 as inorganic precursor through sol–gel process. The as-prepared materials were characterized by X-ray diffraction spectroscopy, scanning and transmission electron microscopy, specific surface area, Fourier-transformed infrared spectroscopy, and diffuse reflectance ultraviolet–visible spectroscopy. The template material could be easily removed by extracting with dichloromethane and was confirmed by infrared spectroscopy. X-ray diffraction pattern reveals the crystalline part of as-prepared product as a framework of anatase phase. From the N2 adsorption–desorption analysis, the as-prepared sample has a surface area of 301 m2/g with pore size distribution narrowly centered around 6 nm. The photodegradation of indigo carmine including kinetics, effect of pH, and recyclability of the product were investigated. The photocatalytic results showed that the as-synthesized titania could efficiently degrade indigo carmine under ultraviolet irradiation and showed higher photocatalytic activity than the commercial Degussa P25–TiO2.  相似文献   

5.
In the present paper, photovoltaic studies of dye-sensitized solar cells (DSSCs) based on betacyanin/TiO2 and betacyanin/WO3–TiO2 have been done. The cell performances were compared through IV curves and wavelength dependant photocurrent measurements for the two new types of DSSCs. The TiO2-coated DSSC showed the photovoltage and photocurrent of 300 mV and 4.96 mA/cm2, whereas the cell employing WO3–TiO2 photoelectrode showed the values 435 mV and 9.86 mA/cm2, respectively. The conversion efficiency of TiO2 based dye-sensitized solar cell was found to be 0.69 %, while WO3–TiO2-based cell exhibited a higher conversion efficiency of 2.2 %. The better performance of the WO3–TiO2 dye-sensitized solar cell photoelectrode is thought to be due to an inherent energy barrier at the electrode/electrolyte interface leading to the reduced recombination of photoinduced electrons.  相似文献   

6.
TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ~300 nm and ~2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132–1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 °C. These responses were 1–5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core–shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core–shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.  相似文献   

7.
Dye-sensitized solar cells (DSSCs) based on a novel composite photoanode of TiO2 nanoparticles coating on electrodeposited ZnO nanotube arrays are fabricated and characterized. An efficiency of 3.94 % is achieved for the composite cell, increasing 86.7 % than 2.11 % of the ZnO nanotubes cell. The short-circuit current (J sc) and open-circuit voltage (V oc) are also enhancing 52.9 % and 25.3 %, respectively. The improvements are because of the high surface area of TiO2 nanoparticles, as well as fast electron transport and light scattering effect of ZnO nanotubes.  相似文献   

8.
In this paper, we synthesized rutile TiO2 nanorods by hydrolysis of TiCl4 ethanolic solution in water at 50?°C. Scanning electron microscopy and transmission electron microscopy images show that the as-prepared sample was consisted of nanoflowers of about 500?nm in sizes, and each petal of nanoflowers was assembled by several nanorods. We tested the electrochemical properties of the rutile TiO2 nanorods as an anode material for lithium-ion batteries. The rutile TiO2 nanorods exhibited a large initial discharge capacity of 223?mA?h?g?1, and the stabilized capacity was as high as 170?mA?h?g?1 after 100 cycles. These improved electrochemical performances may be attributed to the shorter diffusion length for both the electron and Li+, and the large electrode?Celectrolyte contact area offered by the nanorods with a large specific surface area, which facilitated the lithium ions insertion and extraction.  相似文献   

9.
Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.  相似文献   

10.

A novel, facile, catalyst-free, and low temperature process for the synthesis of discrete anatase TiO2 nanocrystals has been developed in the absence of stabilizing agent. The product was shown to be discrete anatase TiO2 nanocrystals with a mean diameter of 4.97 ± 0.9 nm and a specific surface area of 393 m2/g. By varying the water content and precursor concentration, the particle size could be tuned. Also, the resultant colloid solution was quite stable even in the absence of stabilizing agent because of the coverage of EG molecules on the particle surface. In addition, the anatase TiO2 nanocrystals obtained in this work had highly thermal stability even at temperatures up to 800 °C. Also, as compared to Degussa P25 TiO2 powders, they exhibited stronger absorption at 200–350 nm and higher transmittance in the visible light region. Thus, the new approach proposed in this work was practicable for the synthesis of anatase TiO2 nanocrystals, particularly for those requested to have highly thermal stability and UVC-cut capability.

  相似文献   

11.
White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array grown on fluorine-doped tin oxide substrate by hydrothermal process is investigated. The average length of TiO2/α-Fe2O3 nanorods is about 3.5 μm, and the average diameter is about 250 nm. The sizes of the α-Fe2O3 particles are in the range of 30 ~ 70 nm. The current–voltage characteristics of the composite nanorods array show a good rectifying property and bipolar resistive-switching behavior, and the resistive-switching behavior can be regulated by white-light illumination at room temperature. This study is helpful for exploring the multifunctional materials and their applications in nonvolatile multistate memory devices.  相似文献   

12.
Hydrothermal and non-hydrothermal nanoporous TiO2 materials were synthesized via a doubly surfactant route by using cationic cetyltrimethylammonium bromide and anionic sodium dodecyl sulfate surfactants as the molecular template/structure directing agent. Hydrothermal treatment was performed for comparison. The bulk chemical and phase compositions, crystalline structures, particle morphologies, thermal stabilities and surface texturing were determined by means of X-ray powder analysis, SEM and N2 sorptiometry. The nanoporous TiO2 materials were found to have a spherical morphology with a diameter range of 50–200 nm and a high surface area (390 m2 g?1). Hydrothermal and non-hydrothermal nanoporous TiO2 materials were applied for adsorption of heavy metal cations and the toxic organic compound, copper phthalocyanine, from water for evaluation of their adsorption properties. Both nanoporous TiO2 materials were found to have similar adsorption capacities toward heavy metal cations and CuPc. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential for application as a new adsorbent especially for adsorbing heavy metal cations from wastewaters.  相似文献   

13.
The ZnO nanowire (NW) array/TiO2 nanoparticle (NP) composite photoelectrode with controllable NW aspect ratio has been grown from aqueous solutions for the fabrication of dye-sensitized solar cells (DSSCs), which combines the advantages of the rapid electron transport in ZnO NW array and the high surface area of TiO2 NPs. The results indicate that the composite photoelectrode achieves higher overall photoelectrical conversion efficiency (η) than the ZnO NW alone. As a result, DSSCs based on the ZnO NW array/TiO2 NP composite photoelectrodes get the enhanced photoelectrical conversion efficiency, and the highest η is also achieved by rational tuning the aspect ratio of ZnO NWs. With the proper aspect ratio (ca. 6) of ZnO NW, the ZnO NW array/TiO2 NP composite DSSC exhibits the highest conversion efficiency (5.5 %). It is elucidated by the dye adsorption amount and interfacial electron transport of DSSCs with the ZnO NW array/TiO2 NP composite photoelectrode, which is quantitatively characterized using the UV-Vis absorption spectra and electrochemical impedance spectra. It is evident that the DSSC with the proper aspect ratio of ZnO NW displays the high dye adsorption amount and fastest interfacial electron transfer.  相似文献   

14.
Self-assembled monoclinic phase of novel floral β-Ga2O3 nanorods were prepared using reflux condensation method by controlled precipitation of metal cations with urea. The structural and morphological properties were investigated by X-ray powder diffraction, Raman spectroscopy and Scanning electron microscope. Single-crystalline nanorods with size 100 nm involved in the self-assembly process to form flowery pattern have diameter ~1 μm with surface area 40.8 m2/g confirmed from transmission electron microscope and Brunauer–Emmett–Teller analysis. The band gap energy of 4.59 eV was evaluated from the UV–vis diffuse reflectance spectrum and the photoluminescence spectrum displayed the characteristic luminescence and blue-light emission peaks. Further, the photocatalytic activity of novel β-Ga2O3 floral nanorods towards the photodegradation of Rhodamine B in aqueous solution under ultra violet light irradiation showed better photocatalytic activity than the commercial photocatalyst Degussa P25 TiO2.  相似文献   

15.
This study presents a novel exposure protocol for synthesized nanoparticles (NPs). NPs were synthesized in gas phase by thermal decomposition of metal alkoxide vapors in a laminar flow reactor. The exposure protocol was used to estimate the deposition fraction of titanium dioxide (TiO2) NPs to mice lung. The experiments were conducted at aerosol mass concentrations of 0.8, 7.2, 10.0, and 28.5 mg m?3. The means of aerosol geometric mobility diameter and aerodynamic diameter were 80 and 124 nm, and the geometric standard deviations were 1.8 and 1.7, respectively. The effective density of the particles was approximately from 1.5 to 1.7 g cm?3. Particle concentration varied from 4 × 105 cm?3 at mass concentrations of 0.8 mg m?3 to 12 × 106 cm?3 at 28.5 mg m?3. Particle phase structures were 74% of anatase and 26% of brookite with respective crystallite sized of 41 and 6 nm. The brookite crystallites were approximately 100 times the size of the anatase crystallites. The TiO2 particles were porous and highly agglomerated, with a mean primary particle size of 21 nm. The specific surface area of TiO2 powder was 61 m2 g?1. We defined mice respiratory minute volume (RMV) value during exposure to TiO2 aerosol. Both TiO2 particulate matter and gaseous by-products affected respiratory parameters. The RMV values were used to quantify the deposition fraction of TiO2 matter by using two different methods. According to individual samples, the deposition fraction was 8% on an average, and when defined from aerosol mass concentration series, it was 7%. These results show that the exposure protocol can be used to study toxicological effects of synthesized NPs.  相似文献   

16.
A nanohybrid C-LiMnPO4 is important to tailor its electrochemical properties useful for Li+-ion batteries and photo-catalysis. In this article, we report a simple in situ C-LiMnPO4 synthesis, wherein the LiMnPO4 grows from a supersaturated solution LiOH·H2O, MnSO4·H2O, and H3PO4 in water at 200 °C in an autoclave in a hydrothermal reaction and bonds in situ to nascent carbon of a surface layer on a surface reaction with a long chain hydrocarbon used during the reaction. A phase pure C-LiMnPO4 is formed in a shape of nanorods (Pnma orthorhombic crystal structure), with 100–150 nm diameters, 150–800 nm lengths, and 2–3 nm thickness of a co-bonded C-sp2 surface layer. The LiMnPO4 rigidly co-bonds to C-sp2 via O2? in the PO4 3? polygons in a joint surface layer that a single molecular bonding extends well up to 600 °C, with a due mass loss on an extended heating in air. The sample contains fine pores with an average 3.0 nm diameter and a 9.0 m2/g surface area. At room temperature, it develops a huge dielectric permittivity ε r~1.9 × 105 near 1 Hz frequencies, which on raising the frequency decays progressively to a fairly steady ε r~1.5 × 103 at ≥1 kHz. Bare LiMnPO4 is a low dielectric phase, ε r < 10. A non-Debye type of dielectric relaxation is shown in the modulus plots. As frequency approaches to 105 Hz, nearly three orders of larger ac conductivity, 2.5 × 10?5 Scm?1 at 106 Hz, develop over a carbon-free LiMnPO4 value useful for the applications.  相似文献   

17.
Herein, rod-like ZnO nanostructures were synthesized via a novel hydrothermal route using Zn(OAc)2, ethylenediamine and hydrazine as a new set of starting reagents. The as-synthesized products were characterized by techniques including XRD, EDS, SEM, XPS, Pl and FTIR. The prepared ZnO nanostructures were utilized as shell on TiO2 film in DSSCs. Effect of precursor type, morphology and thickness of ZnO shell (number of electrophoresis cycle) on solar cells efficiency were well studied. Our results showed that ethylenediamine has crucial effect on morphology of synthesized ZnO nanostructures and using ZnO nanostructures leads to an increase in DSSCs efficiency compared to bare TiO2 from 4.66 to 7.13% (~40% improvement). Moreover, highest amount of solar cell efficiency (7.13%) was obtained by using ZnO nanorods with two cycle of electrophoresis for deposition.  相似文献   

18.
Photoelectrodes of dye-sensitized solar cells (DSSCs) have been prepared using nanosized titanium dioxide that have soaked in a solution of different saffron (Crocus sativus L.) spice content in ethanol. The optimized polyacrylonitrile (PAN)-based gel polymer electrolyte with 40.93 wt.% ethylene carbonate, 37.97 wt.% propylene carbonate, 4.37 wt.% tetrapropylammonium iodide, 9.86 wt.% PAN, 1.24 wt.% 1-butyl-3-methylimidazolium iodide, 4.35 wt.% lithium iodide and 1.28 wt.% iodine has been used as the electrolyte for DSSC. The electrolyte has conductivity of 2.91 mS cm?1 at room temperature (298 K). DSSCs were also sensitized with saffron solution that has been added with 30 wt.% chenodeoxycholic acid (CDCA) co-adsorbent and designated as DSSC P4. The solar cell converts light-to-electricity at an efficiency of 0.31%. This is 29% enhancement in efficiency for the DSSC without addition of CDCA in the saffron-ethanol solution. The DSSC exhibits current density at short-circuit (J sc ) of 1.26 mA cm?2, voltage at open circuit (V oc ) of 0.48 V and 51% fill factor. DSSC P4 also exhibits the highest incident photon-to-current density of more than 40% at 340 nm wavelength.  相似文献   

19.
Plasmonic metal nanoparticles have shown great promise in enhancing the light absorption of organic dyes and thus improving the performance of dye-sensitized solar cells (DSSCs). However, as the plasmon resonance of spherical nanoparticles is limited to a single wavelength maximum (e.g., ~ 520 nm for Au nanoparticles), we have here utilized silica-coated gold nanorods (Au@SiO2 NRs) to improve the performance at higher wavelengths as well. By adjusting the aspect ratio of the Au@SiO2 NRs, we can shift their absorption maxima to better match the absorption spectrum of the utilized dye (here we targeted the 600–800 nm range). The main challenge in utilizing anisotropic nanoparticles in DSSCs is their deformation during the heating step required to sinter the mesoporous TiO2 photoanode and we show that the Au@SiO2 NRs start to deform already at temperatures as low as 200 °C. In order to circumvent this problem, we incorporated the Au@SiO2 NRs in a TiO2 nanoparticle suspension that does not need high sintering temperatures to produce a functional photoanode. With various characterization methods, we observed that adding the plasmonic particles also affected the structure of the produced films. Nonetheless, utilizing this low-temperature processing protocol, we were able to minimize the structural deformation of the gold nanorods and preserve their characteristic plasmon peaks. This allowed us to see a clear redshift of the maximum in the incident photon-to-current efficiency spectra of the plasmonic devices (Δλ ~ 14 nm), which further proves the great potential of utilizing Au@SiO2 NRs in DSSCs.
Graphical Abstract Undeformed gold nanorods provide an enhanced performance of dye-sensitized solar cells at high wavelengths
  相似文献   

20.
Dye-sensitized solar cells (DSSCs) were fabricated with N–F-doped TiO2 electrodes. The XRD pattern of the N–F-doped TiO2 is almost the same as that of pure TiO2, showing that N and F doping has little influence on the formation of anatase titania. The influence of dopant N and F on band energetics and photoelectrochemical properties of nanostructured TiO2 electrodes were investigated. Compared with pure TiO2 electrodes, the Efb of N–F-doped TiO2 electrodes shifted a little in electrolytes containing LiClO4. However the total trap densities were remarkably decreased as TiO2 electrodes were doped with N and F. Finally the N–F-doped TiO2 electrodes were sensitized with N3 and their photoelectrochemical properties were studied. Experimental results showed that the photoelectric conversion efficiency of N3 sensitized N–F-doped TiO2 electrodes was 8.61% under irradiation of 100 mW cm?2 white light, about 17.1% higher than that of a pure TiO2 electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号