首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single crystals of Tl2[NbCl6] (1) and Tl2 [NbBr6] (2) are obtained as black needles on heating TlCl, Nb, S2Cl2 (1) and Tl, Nb, and Br2 at 400°C (2). Tl2NbBr6 also forms in the reaction of TlBr, Nb, Br2, and S at 500°C. Both compounds crystallize in the K2[PtCl6] structure type to form non-distorted octahedral [NbХ6]2– anions (Nb–Cl 2.397(4) Å and Nb–Br 2.516(2) Å). The magnetic properties of Tl2[NbBr6] in a range 5-300 K indicate an antiferromagnetic interaction between Nb4+ ion spins (d1, S = 1/2). On cooling, the compound becomes a noncollinear ferromagnet with Tc = 23 K.  相似文献   

2.
Reaction of the thiobromide [Mo3S7Br6]2− cluster anion with 5,6-dimethyl-1,10-phenanthroline (Me2Phen) in solution leads to the substitution of two bromide ligands and the subsequent formation of a new mixed-ligand neutral complex [Mo3S7Br4(Me2Phen)] (I). Reaction of [Mo3S7Br6]2− with 5,6-dimethyl-1,10-phenanthroline in CH2Cl2 followed by treatment of I with Na(Dtc) · 3H2O (Dtc = diethyldithiocarbamate) results in the new mixed-ligand cluster complex [Mo3S7(Dtc)2(Me2Phen)]2+ (IIa). Slow evaporation of the CHCl3 solution of the complex in the presence of PF6 gives crystals of {[Mo3S7(Dtc)2(Me2Phen)]Br}PF6 · 3CHCl3 (II) characterized by X-ray structural analysis. Close contacts S...S result in the formation of cationic dimers {[Mo3S7(Dtc)2(Me2Phen)]2}4+ which form infinite chains through additional Sax...Br contacts. All compounds were characterized by IR, elemental analysis and ESI-MS. Synthesized complexes represent the first examples of heteroleptic Mo3S7 clusters containing phenanthroline ligands.  相似文献   

3.
Single crystals of two new mercury thiohalides of the composition Hg3S2Cl2? xBrx(x = 0.5) have been grown from gas phase and studied by X-ray crystallography. Structure refinement for monoclinic (I) and cubic (II) phases (I: a = 16.841(2) Å, b = 9.128(2) Å, c = 9.435(4) Å; β = 90.080(10)°, V = 1450.3(7) Å3, space group C2/m, Z = 8, R = 0.0528; II: a = 18.006(2) Å, V = 5837.8(11) Å3, space group \(Pm\bar 3n\), Z = 32, R = 0.0503) clearly shows that they are polymorphs of the same composition Hg3S2Cl1.5Br0.5. The monoclinic modification I is similar to the synthetic phases γ-Hg3S2Cl2, β-Hg3S2Br2, Hg3Se2Br2 and to the analogue of radtkeite mineral, Hg3S2ClI. The modification II is isostructural to the synthetic β-Hg3S2Cl2. In both structures, each S atom coordinates three Hg atoms with the formation of pyramidal SHg3 units (Hg-S 2.37–2.48 Å; HgSHg 93.1–97.5 ). The SHg3 units are linked through Hg vertices into corrugated layers [Hg12S8]∞∞ (I) and isolated cubic groups [Hg12S8] (II). Similarly to other mercury chalcohalides, the crystal structures are basically determined by the halogen atoms which form a cubic sublattice incorporating the Hg-S moieties.  相似文献   

4.
The reactions of the oxalate complexes [M3Q7(C2O4)3]2− (M = Mo or W; Q = S or Se) with MnII, CoII, NiII, and CuII aqua and ethylenediamine complexes in aqueous and aqueous ethanolic solutions were studied. The previously unknown heterometallic complexes [Mo3Se7(C2O4)3Ni(H2O)5]·3.5H2O (1) and K3{[Cu(en)2H2O]([Mo3S7(ox)3]2Br)}·5.5H2O (2) were synthesized. In these complexes, the oxalate clusters serve as monodentate ligands. The K(H2en)2[W3S7(C2O4)3]2Br·4H2O salt (3) was isolated from solutions containing CoII, NiII, or CuII aqua complexes and ethylenediamine. The reaction of [Mo3Se7(C2O4)3]2− with HBr produced the bromide complex [Mo3Se7Br6]2−, which was isolated as (Bu4N)2[Mo3Se7Br6] (4). Complexes 1–3 were characterized by X-ray diffraction, IR spectra, and elemental analysis. The formation of 4 was detected by electrospray mass spectrometry. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1645–1649, September, 2007.  相似文献   

5.
[Co(NH3)6][AuX4]X2 binary complex salts, where X = Cl? (I) and Br? (II), have been obtained and defined by element, X-ray diffraction, and thermal analyses and by IR, Raman, and electron spectroscopy. The compounds are isostructural. Their structural units are the [Co(NH3)6]3+ complex cations, the [AuX4]? complex anions, and the X? anions. The plane square environment of the gold atom is completed to an elongated bipyramid by two halide ions lying at distances Au...Cl 3.245 Å for I and Au...Br 3.362 Å for II. The thermolysis products of I and II are pure gold and cobalt metal powders when thermolysis is performed under hydrogen and a mixture of metallic gold with cobalt halide in a reaction under an inert atmosphere.  相似文献   

6.
Conductivity of perovskite phosphate–substituted solid solutions of Ba4Ca2Nb2 x P x O11 (0.0 ≤ x ≤ 0.5) was studied as a function of temperature, partial pressure of oxygen and water vapors. It is proved that the studied systems are protonic conductors at the temperatures below 600°C in the atmosphere with elevated content of water vapors (pH2O = 1.92 × 10–2 atm). Introduction of the tetrahedral [PO4] group in the complex oxide matrix of Ba4Ca2Nb2O11 results in an increase in the oxygen–ionic (dry air, pH2O = 1.91 × 10–4 atm) and protonic conductivities (wet air, pH2O = 1.92 × 10–2 atm). Is it found that the doping causes a considerable increase in chemical stability of phases with respect to carbon dioxide.  相似文献   

7.
The binuclear osmium complex Os3S7SeCl8 was prepared by the reaction of cluster chalcogen chloride K6Os2S2O6(CN)8 with an aqueous KCN solution. In the complex, the distance between the osmium atoms is 2.85 Å, and they are linked by μ-SO 2 2? bridges with the OsSOs angle of 75.9°. The osmium coordination number is 6. In the reaction with CN? ligands under study, the individual fragments of the structure are retained; however, the trinuclear cluster skeleton of Os3S7SeCl8 is destroyed.  相似文献   

8.
The quaternary thioselenochloride complex Os2S6Se2Cl8 (I) was obtained by a reaction of OsO4 with a solution of Se in S2Cl2 at 100°C and identified by combination of X-ray diffraction (polycrystalline approach) and cluster framework isolation. A reaction of complex I with melted 4-cyanopyridine (4-CNPy) at 165°C gave the complex Os2S2Cl4(4-CNPy)4, which confirms the integrity of the binuclear cluster frame-work [Cl2OsS2OsCl2] in complex I.  相似文献   

9.
Quantum chemical calculations of the [Mo3S7(Et2dtc)3](Et2dtc) complex in different solvents are performed. It is shown that the binding energy between the cluster [Mo3S7(Et2dtc)3]+ cation and the outersphere (Et2dtc)? anion exponentially decreases with increase in the solvent dielectric permittivity. By DOSY NMR it is determined that in chloroform, the cationic and anionic moieties of the complex form an associate (contact ion pair), while in strongly polar dimethyl sulfoxide these moieties move independently of one another.  相似文献   

10.
The possibility of synthesizing complex sulfide phases in the BaSm2S4-Tm2S3 system has been studied. Tm2S3 solid solutions were obtained with BaSm2S4 (CaFe2O4 structural type). The samples were identified by X-ray diffraction analysis and electron microscopy. The range of the solid solutions was determined. The total conductance was studied, and the conductance activation energy was calculated for samples with different dopant contents. The electrolytic properties of basic ternary sulfide and complex sulfide phases in the BaSm2S4-x mol % Tm2S3 system were investigated. A possible mechanism of defect formation was proposed.  相似文献   

11.
The tris-chelate complex of vanadium(IV) (Bu4N)2[V(dmit)3] is prepared from VCl3 and (Bu4N)2[Zn(dmit)2] (dmit = isotrithionedithiolate C3S5 2–) and characterized by single crystal XRD and mass spectrometry. The complex crystallizes in the space group Pna21 and has a distorted octahedral environment of vanadium. The complex is paramagnetic and gives a characteristic EPR spectrum in both solution and solid phase. The g factors and hyperfine interaction constants are determined.  相似文献   

12.
105Rh[1,5,9,13-tetrathiacyclohexadecane-3,11-diol] is a promising drug precursor for targeted radiotherapy. Nevertheless, the axial position of chloride ions in the complex structure and their weak binding to rhodium centre, due to HSAB concept, make such a complex subject to modifying action of certain sulphuric ligands, like human plasma thiol antioxidants: glutathione and cysteine. Experiments were performed with both radioactive 105Rh and inactive rhodium. The complexation of rhodium with 1,5,9,13-tetrathiacyclohexadecane-3,11-diol (16S4diol) resulted in three distinct peaks seen on UV, radiometric and MS chromatograms. The substitution of chlorides was noted in over 80% of 105[Rh(16S4diol)Cl2]+ units after incubation with glutathione, and less than 10% of complex units after incubation with cysteine (24 h, 37 °C). Reaction of 105[Rh(16S4diol)Cl2]+ with 1,8-octandithiol and 1,9-nonandithiol resulted in disappearance of the complex peak and occurrence of two new peaks. Product of RhCl3 and 16S4diol reaction is a mixture of three distinct forms having different number of chlorine atoms. Our in vitro experiments suggest that the substitution of axial chlorides with glutathione and cysteine might also occur in vivo in human plasma. Glutathione shows higher reactivity than cysteine in replacement reaction. Axial positions in precursor might be effectively blocked by 1,8-octandithiol and 1,9-nonandithiol.  相似文献   

13.
14.
The solid-phase interaction in the V2O5-Nb2O5-MoO3 system has been investigated, and the formation of a solid solution bounded by the compositions MoNb2V4O18 ? δ, Mo2NbV5O21 ? δ, Mo2Nb3V3O21 ? δ, and Mo4Nb9V9O57 ? δ has been found (δ is nonstoichiometry). In the V2O5?Nb2O5 system, the formation of three compounds is verified, namely, VNbO5 (tetragonal structure), VNb9O25, and V2Nb23O62.5. The first two compounds are isostructural and form a continuous solid solution with tetragonal symmetry. A new compound of the composition Mo3NbVO14 ? δ has been synthesized. This compound is isostructural to the Mo3Nb2O14 compound described in the literature and forms a tetragonal solid solution with it. The phase equilibria in the V2O5-Nb2O5-MoO3 system in the subsolidus region have been determined.  相似文献   

15.
Phase formation processes in the systems Ln2O3-SrO-Fe2O3 (Ln = La, Nd) in air in the temperature range 1200–1500°C were studied. The synthesis of the complex ferrites La2SrFe2O7 and Nb2SrFe2O7 involves the formation of the intermediate compounds LnFeO3 and LnSrFeO4 and occurs by the same mechanism as the synthesis of the corresponding aluminates, but much faster.  相似文献   

16.
The crystal structure of As-schwatzite Cu6(Cu5.26Hg0.75)(As2.83Sb1.17)S13 (Aktash deposit, Altai mountains) is refined. Tetrahedrally shaped dark-gray single crystals of the mineral belong to the cubic crystal system: I4¯3m space group, a = 10.2890(1) Å, V = 1089.2(1) Å3, d = 4.99 g/cm3, Z = 2 for the composition Cu11.26Hg0.75As2.83Sb1.17S13, R = 0.0177. The structure is based on the sphalerite-like framework comprising identically oriented (Cu,Hg)S4 tetrahedra ((Cu,Hg)-S 2.3452(8) Å) and (As,Sb)S3 pyramids ((As,Sb)-S 2.311(1) Å) sharing their vertices. The centers of [Cu6] octahedra in the (000) and (1/2 1/2 1/2) positions coinciding with the centers of the “cluster” anionic vacancies [□]4 are occupied by the so-called “thirteenth” sulfur atom. Quantum chemical calculations of the electron density are carried out for the [As4S13Cu6]6 fragment. The calculation results confirm the presence of strain in the [As4S13Cu6]6 moiety, which exists due to the support of the surrounding symmetric framework including the external sulfur atoms of the fragment. The possibility of inclusion of mercury into the framework, which is much richer in arsenic than in antimony, is demonstrated. High stability of the framework determines significant compression of the S-centered [SCu6] octahedron in its interstices, bringing together copper atoms to 3.145(1) Å and shortening the Cu-S distances to 2.224(1) Å  相似文献   

17.
New mixed valence gold(III/I) salt containing two complexes [Au(Me2phen)Br2][AuBr2] (1) was prepared from the reaction of AuBr3 and 5,6-dimethyl-1,10-phenanthroline (Me2phen) in a mixture of methanol and acetonitrile. Suitable crystals of 1 for X-ray diffraction measurement were obtained by slow evaporation of the resulted red solution at room temperature. This complex was characterized by spectral methods (IR, UV–Vis and 1H NMR), elemental analysis and single-crystal X-ray diffraction. The X-ray structural analysis indicated that the asymmetric unit of 1 contains one [Au(Me2phen)Br2]+ cation and two half anions of [AuBr2]ˉ. Furthermore, the packing diagram of this complex, 3-D structure stabilized by intermolecular Au…Br and Au…π interactions and intermolecular C–H···Br hydrogen bonds. The experimental investigations on complex have been accompanied computationally by the density functional theory (DFT) and time-dependent DFT calculations. The nature of the Au–N bonds was investigated using quantum theory of atoms in molecules. Moreover, natural bond orbital analysis carried out to obtain hyper-conjugative interactions and electron delocalization on the complex.  相似文献   

18.
Summary Heat capacity measurements of the two-dimensional metal-assembled complex, (NEt4)[{MnIII(salen)}2FeIII(CN)6] [Et=ethyl, salen= N,N’-ethylenebis(salicylideneaminato) dianion], were performed in the temperature range between 0.2 and 300 K by adiabatic calorimetry. A ferrimagnetic phase transition was observed at Tc1=7.51 K. Furthermore, another small magnetic phase transition appeared at Tc2=0.78 K. Above Tc1, a heat capacity tail arising from the short-range ordering of the spins characteristic of two-dimensional magnets was found. The magnetic enthalpy and entropy were evaluated to be ΔH=291 J mol-1 and ΔS=27.4 J K-1 mol-1, respectively. The experimental magnetic entropy agrees roughly with ΔS=Rln(5·5·2) (=32.5 J K-1 mol-1; R being the gas constant), which is expected for the metal complex with two Mn(III) ions in high-spin state (spin quantum number S=2) and one Fe(III) ion in low-spin state (S=1/2). The heat capacity tail above Tc1 became small by grinding and pressing the crystal. This mechanochemical effect would be attributed to the increase of lattice defects and imperfections in the crystal lattice, leading not only to formation of the crystal with a different magnetic phase transition temperature but also to decrease of the magnetic heat capacity and thus the magnetic enthalpy and entropy.  相似文献   

19.
Several vertical sections are investigated in the HgBr2-PbBr2-CsBr system by the methods of physicochemical analysis. Six compounds, namely, CsHg2Br5, CsHgBr3, Cs2HgBr4, CsPb2Br5, CsPbBr3, and Cs4PbBr6, are formed in the bordering binaries of the ternary system. By the results of investigation, the projection of the liquidus surface of the HgBr2-PbBr2-CsBr system on the composition triangle is constructed, and the fields of primary crystallization of nine phases are plotted, namely, HgBr2, PbBr2, CsBr, CsHg2Br5, CsHgBr3, Cs2HgBr4, CsPb2Br5, CsPbBr3, and Cs4PbBr6. An immiscibility region is found in the system. This region occupies a considerable part of the primary crystallization field of PbBr2. The coordinates of invariant points are determined, and isotherms are plotted.  相似文献   

20.
Phase diagrams have been designed for the systems Sc2S3-Ln2S3 where Ln = La, Nd, or Gd. In these systems, complex sulfides crystallize in orthorhombic space group Pnma. The sulfides melt congruently and have the following parameters; for LaScS3, a = 0.718 nm, b = 0.654 nm, c = 0.960 nm, 2000 K, 3200 MPa; for NdScS3, a = 0.712 nm, b = 0.646 nm, c = 0.952 nm, 1960 K, 3500 MPa; and for GdScS3, a = 0.704 nm, b = 0.640 nm, c = 0.946 nm, 1900 K, 3400 MPa. The extents of the solid solutions based on the existing phases increase as the effective ion radii of Ln3+ approaches that of Sc3+. At 1670 K, the LnScS3 homogeneity region is 48–52 mol % Nd2S3 and 46–54 mol % Gd2S3. Sc2S3 dissolves 3 mol % Nd2S3 and 6 mol % Gd2S3. γ-Nd2S3 dissolves 2 mol % Sc2S3, and γ-Gd2S3 dissolves 4 mol % Sc2S3. The subsystems Sc2S3-LnScS3 and LnScS3-Ln2S3 are of the eutectic type. The eutectic coordinates are, respectively, 27 mol % La2S3, 1880 K; 75 mol % La2S3, 1800 K; 30 mol % Nd2S3, 1850 K; 74 mol % Nd2S3, 1770 K; 33 mol % Gd2S3, 1800 K; and 74 mol % Gd2S3, 1730 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号