首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

2.
The use of the stratified flow momentum balance for the deduction of interfacial and liquid wall shear stresses from experimental measurements is examined. A systematic error analysis is applied to the governing equations using the principle of maximum uncertainty. A series of air–water experiments were conducted in 50 and 80 mm diameter pipes, in which gas pressure drop, liquid height and gas wall shear stress were measured. A framework for the correlation of the deduced shear stresses is proposed from the experimental measurements. The uncertainty analysis is used to show that the definition of mean liquid height does not significantly influence the overall results. The development of empirical equations based on such methods may lead to total uncertainties of up to 40%, irrespective of accuracy of the experimental data or the appropriateness of the correlating technique. Comparisons with state-of-the-art correlations for the liquid wall and interfacial friction factor data showed even larger discrepancies between measurement and prediction.  相似文献   

3.
We solve the time-dependent simple shear flow of a Johnson–Segalman fluid with added Newtonian viscosity. We focus on the case where the steady-state shear stress/shear rate curve is not monotonic. We show that, in addition to the standard smooth linear solution for the velocity, there exists, in a certain range of the velocity of the moving plate, an uncountable infinity of steady-state solutions in which the velocity is piecewise linear, the shear stress is constant and the other stress components are characterized by jump discontinuities. The stability of the steady-state solutions is investigated numerically. In agreement with linear stability analysis, it is shown that steady-state solutions are unstable only if the slope of a linear velocity segment is in the negative-slope regime of the shear stress/shear rate curve. The time-dependent solutions are always bounded and converge to a stable steady state. The number of the discontinuity points and the final value of the shear stress depend on the initial perturbation. No regimes of self-sustained oscillations have been found.  相似文献   

4.
In this paper, the photoviscoelasticity method of viscoelastic stress analysis has been discussed in detail.lt is shown that,in order to avoid the effects of shrinkage andaging in the test specimens, it is suggested that the specimens should be tempered for three days at a temperature of 60℃ before starting the experiments, and the temperature filtering arrangement is recommended in the experimental setups to keep the temperature absolutely constant. Besides the axi-symmetrical time-dependent stress state, the determination of the principle axes of the refraction tensor experimentally remains an unsufficiently solved problem. To avoid dynamic effect in the step wise loading, the time of measurement in every step should be limited in about one secend.  相似文献   

5.
Using the integral form of a nonlinear corotational model, we derive explicit analytical expressions for the zeroth, second, and fourth harmonics of the second normal stress difference in large-amplitude oscillatory shear (LAOS). This model yields an arbitrary normal stress ratio (ANSR) in any simple shearing deformation, including LAOS. This corotational ANSR model adds one parameter to the corotational Maxwell model, a time constant ?? 0 controlling the ratio ??2/??1 for both the real and imaginary parts of each harmonic of the normal stress difference. The explicit analytical expressions for all harmonics of the alternating shear stress and first normal stress difference responses in LAOS match those obtained previously for the corotational Maxwell model. We evaluate the corotational ANSR model for the case of a single Maxwell relaxation time fluid.  相似文献   

6.
This study deals with the influence of bubbles on a vertical air–water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall region were performed, using standard techniques, such as high-speed video recording and optical fibre probe, and more specific techniques, such as two-phase hot film anemometry for the wall shear stress and conductivity measurement for the thickness of the liquid film at the wall. The injection of macroscopic air bubbles in a pipe flow was shown to increase the wall shear stress. Bubbles travelling close to the wall create a periodic perturbation. The injection of small bubbles amplifies this effect, because they tend to move in the wall region; hence, more bubbles are travelling close to the wall. A simple analysis based on a two-fluid set of equations emphasised the importance of the local gas fraction fluctuations on the wall shear stress.  相似文献   

7.
Extensional viscosity of a low-density polyethylene was measured at three temperatures in uniaxial extension by Sentmanat Extension Rheometer, and in contraction flow using the Cogswell analysis. The molecular stress function model was applied to describe the experimental results. The achieved maximum values from uniaxial transient tests were in accordance with the ones obtained by Cogswell method at similar strain level, and the molecular stress function model was able to describe the experimental transient uniaxial extensional data. The steady-state extensional viscosity was not reached in the experiments.  相似文献   

8.
Long adiabatic riser geometries with low system pressures are present in a lot of energy and petrochemical processes. Natural-circulation systems are an appropriate solution to save operating and maintenance costs. Under certain circumstances natural-circulation systems tend to unstable mass flow, especially in the riser section. The pressure gradients can stress the construction materials and affect the heat transfer. This paper focuses on GENEVA test-facility and its natural-circulation circuit with heat input by steam condensation. The GENEVA test-facility is explained in detail with focus on the local void fraction measurement system in the adiabatic riser section. The differences to former natural circulation test-facilities are particular emphasized. Therefore a transient experiment is presented and analysed. Moreover the influence of flow restrictions at the downcomer outlet is explained and an experimental method is presented, to determine the maximum natural circulation mass flow of the natural-circulation circuit. Besides, a comparison between the two different riser inner diameters, which were used during the experiments, is presented. The convective heat transfer is analysed by taking into account different dimensionless numbers. A variety of experiments were performed up to 100 kWel input power from the evaporators. Flashing and geysering as two types of occurred instabilities are stated and discussed in comparison to former test-facilities. Further phenomena like water hammer and counter current liquid flow are investigated. Based on these analyses constructive solutions can be derived, to stabilize the presented natural-circulation two-phase flow system.  相似文献   

9.
Reasonable agreement is found between values of the first normal-stress differenceN 1 for samples of D2, a polyisobutylene/decalin solution, measured in steady shear flow using three different instruments: a Weissenberg Rheogoniometer (a cone-plate rotational rheometer), a Torsional Balance (plate-plate rotational) Rheometer, and a Stressmeter (a transverse-slot slit-die rheometer). Viscosity values are also in reasonable agreement. Ranges of variables common to at least two rheometers include values of shear stress up to 3,700 Pa and shear rate up to 20,700 s–1 near 25 °C. The agreement supports the approximate validity of the semi-empirical HPBL equation used to calculateN 1 from Stressmeter data over a range of shear rates up to 20,700 s–1 near 25 °C. Time-temperature superposition behavior exhibited by Stressmeter data at temperatures in the range 21 °C to 111 °C suggest that the range of validity of the Stressmeter method for determiningN 1 approximately may extend up to shear rates of 290,000 s–1 at 111 °C.  相似文献   

10.
In large-scale circulating fluidized bed (CFB) boilers, it is common to use multiple cyclones in parallel for the capture of solids, assuming that gas–solid flow to be the same in the cyclones. This article presents a study investigating gas–solid flow through six parallel cyclones in a CFB cold test rig. The six cyclones were located asymmetrically on the left and right walls of the riser. Solid volume fraction and particle velocity profiles at the riser outlets and in the horizontal ducts were measured using a fiber optical probe. Cyclone pressure drop and solid circulating rate were measured for each individual cyclone. Measurements showed good agreement as to the non-uniform distribution of the gas–solid flow, which occurred mainly across the three cyclones on one side: the middle cyclones on both sides had higher particle velocities. Conversely, the solid volume fractions, solid fluxes and solid circulating rates of the middle cyclones were lower than those of the other four cyclones. The apparent reason for the flow non-uniformity among the cyclones is the significant flow non-uniformity at the riser outlets. Under typical operating conditions, the solid volume fractions at the riser outlets had a deviation of up to 26% whereas the solid circulating rates at the stand pipes, 7%. These results are consistent with most other studies in the literature.  相似文献   

11.
We investigate a variety of different semidilute polymer solutions in shear and elongational flow. The shear flow is created in the cone-plate-geometry of a commercial rheometer. We use capillary thinning of a filament that is formed by a polymer solution in the Capillary Breakup Extensional Rheometer (CaBER) as an elongational flow. We compare the relaxation time measured in the CaBER with relaxation times based on the first normal stress difference and the zero shear polymer viscosity that we measure in our rheometer. All of these three measurable quantities depend on different fluid parameters—the viscosity of the solvent, the polymer concentration within the solution, and the molecular weight of the polymers—and on the shear rate (in the shear flow measurements). Nevertheless, we find that the first normal stress coefficient depends quadratically on the CaBER relaxation time. Several scaling laws are presented that could help to explain this empirical relation.  相似文献   

12.
A new, improved linear analytical model is presented in this paper for the dynamics of a slender cantilevered cylinder with an ogival free end, subjected to axial flow directed from its free end towards the clamped one. In the present model the fluid-dynamic forces at the free end of the cylinder are analysed in a meticulous manner. The model predicts that the cylinder loses stability at relatively low flow velocity by flutter, and then at higher flow velocity by static divergence. This agrees with the dynamical behaviour observed in experiments. Moreover, quantitative agreement in the critical flow velocities for flutter and divergence between this improved theory and experiment is fairly good.  相似文献   

13.
Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the nonlinear stability behaviour of parallel shear flow, carries on stability calculation taking account of the perturbations of background turbulence noise under certain assumption, and obtains some results in accordance qualitatively with those of experiment for plane Poiseuille flow and pipe Poiseuille flow.The author thanks Prof. Zhou Heng sincerely for his kind offer of his computer program of the artificial neutrality method on the stability in subcritical range of plane Poiseuille flow.  相似文献   

14.
Force and PIV measurements were performed on rigid tandem wings in the hovering and forward flights at typical Reynolds numbers of real dragonflies. The Strouhal number of the forward flight was 0.6. The phase angles between the fore- and hindwings included 0°, 90°, and 180°. Wings operated in isolation were measured, too, as references. Although many past studies have shown that rigid tandem wings produced less average forces than a single wing regardless the phase angles, the results from the current study illustrated so only at the angle of 180°. However, the contrasting results at 0° and 90° could be due to the differences in parameters of the flow, wing kinematics, and wing shapes. The phase-locked PIV measurements revealed that interaction of wings was achieved through the modifications of the characteristics, such as the strength and locations, of the leading-edge and trailing-edge vortices of fore- and hind-wings. A comparison between the hovering and forward flights identified that the effects of incoming flow included moving the leading-edge and trailing-edge vortices further downstream, and modifying the flow between the tandem wings.  相似文献   

15.
The crack opening displacement (COD) in annealed soda-lime (float) glass has been measured with an electronic speckle pattern interferometry (ESPI) apparatus using coherent laser light. Specimens, naturally pre-cracked with a particular technique, were loaded under strain-driven bending until crack propagated; at regular intervals loading was paused to let the crack reach subcritical equilibrium and the COD measured. By using a post-processing algorithm comparing four images lighted with phase-shifted laser beams, surface displacements could be measured at a resolution of .Glass transparency has allowed to see through that the propagating crack front is not sharp but curved, jagged and merged in an opaque neighborhood. Numerical simulations show that the measured CODs cannot be reproduced if cohesive surface forces à la Barenblatt-Dugdale bridge the crack lips; instead a plastic-like region must form in a bulk neighborhood of the tip, where inelastic strains are associated with volume increase rather than deviatoric distortion. For this, a Gurson-Tvergaard model of porous plasticity, accounting for the formation of microvoids/microcracks, has been found more efficient than classical von Mises plasticity. This study confirms the formation at the crack tip of a process zone, whose occurrence in brittle materials like glass is still a subject of controversy.  相似文献   

16.
An approximate analytical solution is derived for the Couette–Poiseuille flow of a nonlinear viscoelastic fluid obeying the Giesekus constitutive equation between parallel plates for the case where the upper plate moves at constant velocity, and the lower one is at rest. Validity of this approximation is examined by comparison to the exact solution during a parametric study. The influence of Deborah number (De) and Giesekus model parameter (α) on the velocity profile, normal stress, and friction factor are investigated. Results show strong effects of viscoelastic parameters on velocity profile and normal stress. In addition, five velocity profile types were obtained for different values of α, De, and the dimensionless pressure gradient (G).  相似文献   

17.
18.
Thoracoabdominal aneurysm (TA) is a pathology that involves the enlargement of the aortic diameter in the inferior descending thoracic aorta and has risk factors including aortic dissection, aortitis or connective tissue disorders. Abnormal flow patterns and haemodynamic stress on the diseased aortic wall are thought to play an important role in the development of this pathology and the internal wall stress has proved to be more reliable as a predictor of rupture than the maximum diameter for abdominal aortic aneurysms; but this assumption has not been validated yet for aneurysms involving the thoracic aorta. In the present study, three patients with TAs of different maximum diameters were scanned using magnetic resonance imaging (MRI) techniques. Realistic models of the aneurysms were reconstructed from the in vivo MRI data acquired from the patients, and subject-specific flow conditions were applied as boundary conditions. The wall and thrombus were modelled as hyperelastic materials and their properties were derived from the literature. A normal descending aorta was also simulated to provide data for comparison. Fully coupled fluid–solid interaction (FSI) simulations as well as solid static simulations were performed using ADINA 8.2. The results show that the wall stress distribution and its magnitude are strongly dependent on the 3-D shape of the aneurysm and the distribution of thrombus. Maximum wall stresses in all TA models are higher than in the normal aorta, and values of maximum wall stress are not directly related to the maximum aneurysm diameter. Comparisons between the FSI and solid static simulation results showed no significant difference in maximum wall stress, supporting those previous studies which found that FSI simulations were not necessary for wall stress prediction.  相似文献   

19.
A generalised form of the finitely extensible non-linear elastic (FENE) model for modelling non-linear flow of semi-dilute polymer solutions is proposed. It accounts for conformation-dependent polymer elasticity and predicts shear-thinning shear viscosity, non-linear elongational viscosity and first and second normal stress differences. The rheometric material functions predicted by the model are critically compared with the results of the linear Phan–Thien–Tanner model. The predictabilities of these constitutive models under benchmark flow problems are evaluated by time-dependent simulations, using finite volume method based on a CFD simulation toolbox. The effects of the model parameters, the inertia and the contraction ratio are numerically studied. The modified FENE model qualitatively captures the non-linear flow phenomena of polymer solution in the high elasticity number ( $\mathrm {El}$ ) flow regime observed in experiments. The results show that an accurate growth function of the elongational viscosity is the key to the prediction of the time-dependent highly asymmetric flow patterns.  相似文献   

20.
The working tube is a main part of vortex tube which the compressed fluid is injected into this part tangentially. An appropriate design of working tube geometry leads to better efficiency and performance of vortex tube. In the experimental investigation, the parameters are focused on the working tube angle, inlet pressure and number of nozzles. The effect of the working tube angle is investigated in the range of θ = 0–120°. The experimental tests show that we have an optimum model between θ = 0 and θ = 20°. The most objective of this investigation is the demonstration of the successful use of CFD in order to develop a design tool that can be utilized with confidence over a range of operating conditions and geometries, thereby providing a powerful tool that can be used to optimize vortex tube design as well as assess its utility in the field of new applications and industries. A computational fluid dynamics model was employed to predict the performances of the air flow inside the vortex tube. The numerical investigation was done by full 3D steady state CFD-simulation using FLUENT6.3.26. This model utilizes the Reynolds stress model to solve the flow equations. Experiments were also conducted to validate results obtained for the numerical simulation. First purpose of numerical study in this case was validation with experimental data to confirm these results and the second was the optimization of experimental model to achieve the highest efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号