首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wenqing Lin 《Tetrahedron》2005,61(31):7520-7527
Oligonucleotides containing 7-bromo-7-deaza-2,8-diaza-2′-deoxyadenosine (3) and 5-amino-3-bromo-4-carbamoyl-1-(2′-deoxy-β-d-erythro-pentofuranosyl)pyrazole (4) were synthesized. Compound 3 was prepared from 7-bromo-8-aza-7-deaza-2′-deoxyadenosine (5) via the 1,N6-etheno derivative 6 and was converted into the phosphoramidite 11. The 7-bromo substituent of 3 increases oligonucleotide duplex stability compared to the non-halogenated nucleoside. Oligonucleotides incorporating 3 are transformed to those containing 4 during long time deprotection at elevated temperature (25% aq ammonia, 60 °C, 30 h). Compound 3 forms a strong base pair with dG. The base pair stability decreases in the order dG>dT>dA>dC. Similar recognition selectivity is observed for the pyrazole nucleoside 4, however, due to decreased stacking and higher flexibility of the pyrazole moiety, duplexes are less stable than those containing 3.  相似文献   

2.
7-Methyl-8-oxo-2'-deoxyguanosine, an analogue of the abundant promutagen 8-oxo-2'-deoxyguanosine, was incorporated into oligonucleotides and tested for its stability in various base pairs.  相似文献   

3.
Oligodeoxynucleotide probes with disulfide locks between neighboring nucleobases show increases in melting point for duplexes with RNA target strands of up to 7.6 °C. The weakly pairing TT dimers are replaced with locked 2'-deoxy-5-(thioalkynyl)uridine residues via automated synthesis.  相似文献   

4.
Oligonucleotides incorporating the propynyl derivative of 7-deaza-2′-deoxyguanosine (1) were synthesized by solid-phase oligonucleotide synthesis. As building blocks the phosphoramidites 7a,b were prepared. The incorporation of 1 into oligonucleotides exerts a positive effect on the DNA duplex stability. The duplex stabilization by 1 was higher than that of 7-iodo-7-deaza-2′-deoxyguanosine (2b). The stabilizing effect of the 7-propynyl group introduced in the 7-deazapurines is similar to that reported for 8-aza-7-deazapurines. From CD spectra it was deduced that the B-DNA structure is not significantly altered by compound 1.  相似文献   

5.
The 7-deazaguanine (2-aminopyrrolo[2,3-d]pyrimidin-4-one) C(8)-(2'-deoxy-beta-D-ribofuranoside) (6b), which possesses an unusual glycosylation site, was synthesized and incorporated in oligonucleotides. The oligonucleotides were prepared by solid-phase synthesis using phosphoramidite chemistry and were hybridized to form duplex DNA. Compound 6b is able to form base pairs with 2'-deoxy-5-methylisocytidine (m(5)isoC(d)) in oligonucleotide duplexes with antiparallel chain orientation and with dC in parallel duplex DNA. Thus, the C(8)-nucleoside 6b shows a similar base recognition as 2'-deoxyisoguanosine but not as 2'-deoxyguanosine. This indicates that the nucleic acid recognition not only depends on the donor-acceptor pattern of the nucleobase but is influenced by the glycosylation site. Base pairs of compound 6b formed with canonical and modified nucleosides are proposed.  相似文献   

6.
The synthesis of 1,N6-etheno-7-deaza-2′-deoxyadenosine (12b) which was prepared from 7-deaza-2′-deoxyadenosine (5a) with chloroacetaldehyde is described. Also the regioselective glycosylation of the 7-deazapurine-2-one at nitrogen-1 (19) furnishing the pyrrolo-C nucleoside 7a is reported and a side chain derivative with a terminal triple bond (7d) is prepared. The fluorescence properties of these nucleosides and related compounds were determined. The etheno nucleoside 12b is strongly fluorescent showing a Stokes shift of 134 nm and a quantum yield of Φ=0.53. It proved to be stable, both in acidic and in alkaline medium while the parent purine compound 10b is labile under both conditions. Compound 12b was converted into its phosphoramidite 14 and was incorporated into oligonucleotides. Compound 12b destabilizes oligonucleotide duplexes when it is located in the center of the molecule; it stabilizes when it is incorporated in the terminal base pair or acts as an overhanging nucleoside. Temperature-dependent fluorescent measurements yielded sigmoidal melting profiles when compound 12b is stacked to the terminal base pair while a linear decrease of the fluorescence is observed when the molecule is located opposite to the four canonical nucleosides in the center of the duplex.  相似文献   

7.
Oligodeoxyribonucleotides containing 1-deaza-2′-deoxyadenosine ( = 7-amino-3-(2-deoxy-β-D -erythro-pentofuranosyl)-3H-imidazo[4, 5-b]pyridine; 1b ) form Hoogsteen duplexes. Watson-Crick base pairs cannot be built up due to the absence of N(1). For these studies, oligonucleotide building blocks – the phosphonate 3a and the phosphoramidite 3b – were prepared from 1b via 4a and 5 , as well as the Fractosil-linked 6b , and used in solid-phase synthesis. The applicability of various N-protecting groups (see 4a – c ) was also studied. The Hoogsteen duplex d[(c1A)20] · d(T20) ( 11 · 13 ; Tm 15°) is less stable than d(A20) · d(T20) ( 12 · 13 ; Tm 60°). The block oligomers d([c1A)10–;T10] ( 14 ) and d[T10–(c1A)10] ( 15 ) containing purine and pyrimidine bases in the same strand are also able to form duplexes with each other. The chain polarity was found to be parallel.  相似文献   

8.
8-Halogenated-7-deaza-2′-deoxyguanosines (8-halo-7-deaza-dG) were designed to structurally mimic 8-oxo-2′-deoxyguanosine (8-oxo-dG), which is representative of an oxidized nucleoside. It has been shown by NMR that the conformation around the N-glycosidic bond of (8-halo-7-deaza-dG) is preferably syn, similar to 8-oxo-dG. The base pairing properties of 8-halo-7-deaza-dG were studied by measuring the thermal denaturation temperature of the duplexes, showing that their base pair with dC is destabilized compared with natural dG. These results also support their preference for syn conformation. Unlike 8-oxo-dG, 8-halo-7-deaza-dG did not form a stable base pair with dA, most likely due to the lack of N7-H hydrogen bonding with dA. In conclusion, the newly-designed 8-halo-7-deaza-dG analogs resemble 8-oxo-dG in its shape and preference for syn conformation, but they do not form Hoogsteen base pair with the opposing dA.  相似文献   

9.
The stereoselective syntheses of 6-azauracil- and 8-aza-7-deazaadenine 2'-deoxy-2'-fluoro-beta-d-arabinofuranosides and employing nucleobase anion glycosylation with 3,5-di-O-benzoyl-2-deoxy-2-fluoro-alpha-d-arabinofuranosyl bromide as the sugar component are described; the 6-azauracil 2'-deoxy-2'-fluoro-beta-d-ribofuranoside was prepared from 6-azauridine via the 2,2'-anhydro intermediate and transformation of the sugar with DAST. Compounds show a preferred N-conformer population (100% N for , and 78% N for ) being rather different from nucleosides not containing the combination of a fluorine atom at the 2'-position and a nitrogen next to the glycosylation site. Oligonucleotides incorporating and were synthesized using the phosphoramidites and . Although the N-conformation is favoured in the series of 6-azauracil- and 8-aza-7-deazaadenine 2'-deoxy-2'-fluoroarabinonucleosides only the pyrimidine compound shows an unfavourable effect on duplex stability, while oligonucleotide duplexes containing the 8-aza-7-deazaadenine-2'-deoxy-2'-fluoroarabinonucleoside were as stable as those incorporating dA or 8-aza-7-deaza-2'-deoxyadenosine .  相似文献   

10.
Oligonucleotides incorporating the unusually linked 8-aza-7-deazapurine N8-(2'-deoxyribonucleosides) 3a,b (purine and 6-amino-2-chloropurine analogues) were used as chemical probes to investigate the base pairing motifs of the universal nucleoside 8-aza-7-deazapurin-6-amine N8-(2'-deoxyribofuranoside) 2 (adenine analogue) and that of the 2,6-diamino compound 1. Owing to the absence of an amino group on the nucleoside 3a the low stability of oligonucleotide duplexes incorporating this compound opposite to the four canonical DNA-constituents indicate hydrogen bonding and base pairing for the universal nucleosides 1 and 2 which form much more stable duplexes. When the 6-amino-2-chloro-8-aza-7-deazapurine nucleoside 3b replaces 1 and is located at the same positions, two sets of duplexes are formed (i) high Tm duplexes with 3b located opposite to dA or dC and (ii) low Tm duplexes with 3b located opposite to dG or dT. These results are due to the steric clash of the 2-chloro substituent of 3b with the 2-oxo group of dT or the 6-oxo group of dG while the 2-halogeno substituents are well accommodated in the base pairs formed with dA or dC. For comparison duplexes incorporating the regularly linked nucleosides 4-6a,b containing the same nucleobases as those of 1-3a,b were studied.  相似文献   

11.
Oligodeoxyribonucleotides containing the nucleoside 6-aza-2'-deoxyuridine z6Ud (1a) were prepared by using solid-phase synthesis. As the pKa value of this nucleoside is 6.8, unwanted side reactions are observed. Consequently, nitrogen-3 was protected (o-anisoyl protection). The phosphoramidite of 1a prepared on this route was as efficient as the building blocks of canonical nucleosides in allowing multiple incorporations into oligonucleotides. Oligonucleotide duplexes containing 1a show a pH dependence of the Tm value. This is caused by nucleobase deprotonation occurring on compound 1a already under neutral conditions. Metal (M)-DNA formation was studied in the presence of Zn+2 ions. It is demonstrated that 6-azauracil-modified duplexes form M-DNA already in neutral medium while alkaline conditions (above pH 8.5) are required for natural DNA. The conformational analysis of the sugar moiety of the nucleoside 1a and its anisoyl derivative 5a shows a preferred N-conformation in solution while an S-conformation for compound 1a was obtained in the solid state (single-crystal X-ray analysis).  相似文献   

12.
7-Deazapurine and 8-aza-7-deazapurine nucleosides related to dA and dG bearing 7-octadiynyl or 7-tripropargylamine side chains as well as corresponding oligonucleotides were synthesized. "Click" conjugation with 1-azidomethyl pyrene (10) resulted in fluorescent derivatives. Octadiynyl conjugates show only monomer fluorescence, while the proximal alignment of pyrene residues in the tripropargylamine derivatives causes excimer emission. 8-Aza-7-deazapurine pyrene "click" conjugates exhibit fluorescence emission much higher than that of 7-deazapurine derivatives. They are quenched by intramolecular charge transfer between the nucleobase and the dye. Oligonucleotide single strands decorated with two "double clicked" pyrenes show weak or no excimer fluorescence. However, when duplexes carry proximal pyrenes in complementary strands, strong excimer fluorescence is observed. A single replacement of a canonical nucleoside by a pyrene conjugate stabilizes the duplex substantially, most likely by stacking interactions: 6-12 °C for duplexes with a modified "adenine" base and 2-6 °C for a modified "guanine" base. The favorable photophysical properties of 8-aza-7-deazapurine pyrene conjugates improve the utility of pyrene fluorescence reporters in oligonucleotide sensing as these nucleoside conjugates are not affected by nucleobase induced quenching.  相似文献   

13.
N(2)-alkyl analogues of 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG) were synthesized (alkyl = propyl, benzyl) via reductive amination of the protected OG nucleoside and incorporated into various positions of an RNA strand. Thermal stability studies of duplexes containing A or C opposite a single modified base revealed only moderate destabilization. Both OG as well as its N(2)-alkyl analogues can pair opposite A or C with nearly equal stability, potentially offering a new means of modulating RNA-protein interactions in the minor vs major grooves.  相似文献   

14.
[structure: see text] Nucleotide building blocks with two base moieties were synthesized and incorporated into oligonucleotides. One of the two bases is involved in base pairing within the double helix, while the other base is sticking out of the minor groove. This system may be used for presenting sequence information at the outside of the helix.  相似文献   

15.
[structure: see text] A fluorescent deoxyuridine analogue is sensitive to the polarity of its environment and exhibits a distinct emission profile in single- vs double-stranded oligonucleotides. Emission-monitored denaturation curves of internally modified dU(phen) duplexes are characteristic of the base opposite dU(phen) and distinguish between perfect and mismatched complementary oligonucleotides.  相似文献   

16.
The stereoselective syntheses of 5-halogenated 7-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine nucleosides 3b-d, 4a-c as well as 7-deaza-2'-deoxyisoguanosine are described. Nucleobase anion glycosylation of 2-amino-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (5) with 3,5-di-O-benzoyl-2-deoxy-2-fluoro-alpha-D-arabinofuranosyl bromide (6) exclusively gave the beta-D-anomer, which was deblocked (--> 8), aminated at C4 (--> 3a) and selectively deaminated at C2 to yield 2'-deoxy-2'-fluoro-beta-D-arabinofuranosyl 7-deazaisoguanine (2). Condensation of the 5-halogenated 4-chloro-2-pivaloylamino-7H-pyrrolo[2,3-d]pyrimidines 9a-c with 6 furnished the N7-nucleosides 10a-c together with N2,N7-bisglycosylated compounds 11a-c. The former was converted to the corresponding 2,4-diamino-compounds 3b-d, and the latter was deblocked by NaOMe/MeOH to yield the 4-methoxy-nucleosides 4a-c. Conformational analysis of the sugar moiety of the nucleosides 2 and 3a-d was performed on the basis of vicinal [1H,1H] coupling constants. The fluorine atom in the sugar moiety shifts the sugar conformation from S towards N by about 10%, while the halogen substituents in the base moiety increase the hydrophobicity and polarizability of the nucleobases.  相似文献   

17.
The synthesis of 2'-amino-LNA (the 2'-amino derivative of locked nucleic acid) has opened up a number of exciting possibilities with respect to modified nucleic acids. While maintaining the excellent duplex stability inferred by LNA-type oligonucleotides, the nitrogen in the 2'-position of 2'-amino-LNA monomers provides an excellent handle for functionalisation. Herein, the synthesis of amino acid functionalised 2'-amino-LNA derivatives is described. Following ON synthesis, a glycyl unit attached to the N2'-position of 2'-amino-LNA monomers was further acylated with a variety of amino acids. On binding to DNA/RNA complements, the modified ONs induce a marked increase in thermal stability, which is particularly apparent in a buffer system with a low salt concentration. The increase in thermal stability is thought to be caused, at least in part, by decreased electrostatic repulsion between the negatively charged phosphate backbones when positively charged amino acid residues are appended. Upon incorporation of more than one 2'-amino-LNA modification, the effects are found to be nearly additive. For comparison, 2'-amino-LNA derivatives modified with uncharged groups have been synthesised and their effect on duplex thermal stability likewise investigated.  相似文献   

18.
7-deaza-2,8-diaza-2'-deoxyadenosine (4) was synthesized from 8-aza-7-deaza-2'-deoxyadenosine (1) via the 1,N(6)-etheno derivative 5. Ring opening with sodium hydroxide followed by ring closure in the presence of sodium nitrite formed the tricyclic intermediate 5 from which the transiently introduced "etheno" moiety was removed with NBS. Compound 4 was converted to the phosphoramidite 11, which was employed in solid-phase oligonucleotide synthesis. Base pairing studies on 4, incorporated in a 12-mer duplex, showed that this adenine nucleoside analogue forms a strong base pair with dG but not with dT. This novel base pair is as stable as that of the canonical dA-dT pair. As a result of the absence of nitrogen-7 compound 4 is expected to form a face to face base pair with dG.  相似文献   

19.
20.
The synthesis and thermal stability of oligodeoxynucleotides (ODNs) containing imidazo[5',4':4,5]pyrido[2,3-d]pyrimidine nucleosides 1-4 (N(N), O(O), N(O), and O(N), respectively) with the aim of developing two sets of new base pairing motifs consisting of four hydrogen bonds (H-bonds) is described. The proposed four tricyclic nucleosides 1-4 were synthesized through the Stille coupling reaction of a 5-iodoimidazole nucleoside with an appropriate 5-stannylpyrimidine derivative, followed by an intramolecular cyclization. These nucleosides were incorporated into ODNs to investigate the H-bonding ability. When one molecule of the tricyclic nucleosides was incorporated into the center of each ODN (ODN I and II, each 17mer), no apparent specificity of base pairing was observed, and all duplexes were less stable than the duplexes containing natural G:C and A:T pairs. On the other hand, when three molecules of the tricyclic nucleosides were consecutively incorporated into the center of each ODN (ODN III and IV, each 17mer), thermal and thermodynamic stabilization of the duplexes due to the specific base pairings was observed. The melting temperature (T(m)) of the duplex containing the N(O):O(N) pairs showed the highest T(m) of 84.0 degrees C, which was 18.2 and 23.5 degrees C higher than that of the duplexes containing G:C and A:T pairs, respectively. This result implies that N(O)and O(N) form base pairs with four H-bonds when they are incorporated into ODNs. The duplex containing N(O):O(N) pairs was markedly stabilized by the assistance of the stacking ability of the imidazopyridopyrimidine bases. Thus, we developed a thermally stable new base pairing motif, which should be useful for the stabilization and regulation of a variety of DNA structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号