首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
对二甲醚自热重整制氢体系进行了热力学计算和分析,探讨了反应体系的理论最大能效以及达到热力学平衡时产物等的变化情况,分析了水醚摩尔比、氧醚摩尔比、反应温度等因素对体系平衡组成的影响.分析发现,固定水醚摩尔比时,二甲醚自热重整理论完全反应可在某一氧醚摩尔比下达到自热平衡点,此时反应能量效率最高;重整反应在水醚摩尔比为2.0~4.0、氧醚摩尔比为0.4~0.5以及温度为150~350℃的条件下,产物中氢气摩尔分数高于50%,氢气产率高于80%,产物中一氧化碳摩尔分数低于5%,反应理论最大能效高于85%.  相似文献   

2.
研究了Co/γ-Al2O3,Co/α-Al2O3和Co/SiO2催化剂上的甲烷部分氧化与甲烷二氧化碳重整制合成气反应,只有Co/α-Al2O3是有效的.证明Co和载体的相互作用过强或过弱都不利与此耦合反应.Co和α-Al2O3的作用正好合适.此外,Co的担载量和催化剂稳定性关系很大,Co量过低则在反应过程中会因Co^D→CoAl2O4而失活,Co担载量过高则会导致严重结碳.  相似文献   

3.
以黄铜矿为原料,采用高温焙烧处理制备铜基催化剂用于催化甲醇水蒸气重整制氢反应,借助X射线粉末衍射仪、场发射扫描电子显微镜、H2程序升温还原、甲醇水蒸气重整制氢试验以及原位漫反射傅里叶变换红外光谱仪等对所制催化剂进行表征。结果表明,改变焙烧温度可调节铜基催化剂中铜位点的配位结构,黄铜矿在800℃下焙烧所得催化剂的催化性能最佳。  相似文献   

4.
在镧系金属氧化物载镍催化剂上通过催化重整乙醇和乙醇水溶液可以直接转化为H2,H2的选择性达到60%,乙醇的转化率达到100%。优化催化剂及降低重整反应的温度以使水汽转化反应同时发生来降低产物气中CO的含量。该过程对于生产小型燃料电池的低成本燃料H2,以及便携燃料电池系统需要液态燃料存储的应用具有巨大的潜在价值。  相似文献   

5.
制备稀土金属离子助催的铜锌基醇水蒸汽重整催化剂并分别比较了铜锌和两种以稀土Ce^3 ,Zr^4 为助催剂的铜锌催化剂上甲醇水蒸汽重整制氢的催化性能:在220℃反应条件下,Cu-ZnO,Cu-ZnO-Ce2O3和Cu-ZnO-ZrO2的甲醇转化率分别为28.1%、37.3%和51.6%,后两个催化剂的氢选择性高达100%,CO的选择性为0。Cu-ZnO-ZrO2催化剂经60h的运转后,催化剂的性能不变,触氧实验表明该催化剂能满足甲醇燃料电池电动车启动温度低、CO2选择性高的要求。  相似文献   

6.
采用常压固定床反应器,考察了负载型Co基系列催化剂的焙烧温度、钴含量以及还原温度对甲烷二氧化碳重整过程的影响;筛选出适宜的工艺条件。结果表明,7%Co/BaTiO3催化剂在反应温度为700℃,压力为0.1 MPa,nCO2∶nCH4为1∶1,气相空速GHSV为12 000 h-1的条件下表现出相对良好的催化活性,可得到87.68%的CH4转化率、75.37%的CO选择性和68.31%的H2收率。  相似文献   

7.
担载型镍基催化剂上甲烷二氧化碳重整反应机理的研究   总被引:2,自引:0,他引:2  
采用TPSR、TPD和脉冲反应等方法对担载型镍基催化剂上甲烷二氧化碳重整反应过程中二者的吸附和解离行为进行了详尽的研究.结果表明:CH4在镍基催化剂表面被吸附时至少可解离为三种表面碳物种——Cα、Cβ和Cγ.其中完全脱氢的Cα物种是活泼的反应中间体,而石墨态的Cγ物种则可能是造成催化剂积碳的前身物.高温下部分脱氢的Cβ物种可与H2或CO2反应生成CH或CO.另一方面,CO2仅在该催化剂表面发生弱吸附且只形成一种吸附态.在此基础上推测出甲烷二氧化碳重整反应的协同作用机理.  相似文献   

8.
利用化学反应动力学机理研究了中温条件下CH4/O2/H2O在微型直管反应器内的重整特性。讨论了反应器入口尺寸在0.5~5.0 mm范围之间变化时,重整产氢和甲烷转化效率的暂态特性。研究结果表明:在本文的研究范围内,当反应器尺寸变化时,无论反应中的其他物理量是否随之同比例缩放,均发现反应器尺寸越小,反应速率越快,反应越容易趋于稳定,且反应后氢气产量越高,甲烷转化率越高。  相似文献   

9.
通过水热法合成了一系列Ce-SBA-15的介孔材料,并采取满孔浸渍法负载5%Ni(质量百分比),合成了不同的镍基催化剂.用X-射线衍射、透射电镜、N2物理吸附脱附、H2-程序升温还原等方法对其表征,考察了其甲烷二氧化碳重整制合成气的催化活性.结果表明:Ce进入了SBA-15的硅骨架,但Ce的掺入使孔道的孔径发生变化;CeO2的氧循环功能提高了催化剂的抗积碳性能;由于孔道的限域效应,活性金属的分散度随着铈含量的增加而增大,使催化剂活性提高.  相似文献   

10.
通过Al2O3修饰的Ni-TiO2-Al2O3干凝胶催化剂,该催化剂在973K条件下焙烧10h后比表面积为363m^2/g。孔分布介于2.5~2.7nm之间。采用BET和X-射线衍射考察了Al2O3组份对Ni/TiO2催化剂的影响。结果表明,Al2O3的加入使催化剂颗粒度变小,镍的分散度提高,抑制了Ni/TiO2催化剂的积碳,从而明显的提高了Ni-TiO2-Al2O3催化剂上甲烷和二氧化碳重整反应的活性和稳定性。  相似文献   

11.
连续吸附强化生物油重整制氢工艺能够实现连续高效制取氢气,对该工艺所需的颗粒状催化剂进行了制备,研究了它们对三种生物油模化物(乙醇、丙酮、苯酚)催化性能的差异.实验在固定的操作条件下进行,重整温度设定为750℃,水和碳质量比为6∶1,催化剂填充量为10 cm.结果表明,镍的加入能有效促进重整反应的进行,镁、铈、钴等助剂的添加能够提高催化剂的抗积炭性能,在所制备的催化剂中Mg-Ni/Co对三种模化物均显示出良好的催化性能.利用Mg-Ni/Co催化剂对模拟生物油进行重整制氢,其三类产氢率分别能够达到60%,70%,90%以上,且显示了良好的稳定性和再生性能.  相似文献   

12.
摘要: 搭建了二甲醚水蒸气重整制氢的小样模拟台架,并制备了二甲醚重整制氢催化剂.研究了不同水解活性组分、甲醇重整活性组分和煅烧温度下的尖晶石复合催化剂对二甲醚水蒸气催化重整制氢性能的影响.结果发现:不同水解活性组分中,HZSM 5(硅铝摩尔比r=n(SiO2)/n(Al2O3)=38)的双功能催化剂的H2产率最高;甲醇重整活性组分中,铜锰尖晶石结构催化组分(CuMn2O4)的双功能催化剂的H2产率最高;煅烧温度对CuMn2O4双功能催化剂的催化效果有明显影响,其中煅烧温度为700 °C时H2产率最高.  相似文献   

13.
针对车载甲醇重整制氢燃料电池汽车在实际运行过程中氢气需求问题,设计了面向控制的供氢策略。首先基于Matlab/Simulink平台,搭建了甲醇重整制氢燃料电池系统和整车仿真模型。结合实际工况中整车对燃料电池提出的动态功率需求,以甲醇消耗最低为目标,提出一种基于时间序列指数预测算法提前预知燃料电池耗氢速率进而实时调整重整系统的甲醇供应量的策略。C-WTVC工况仿真结果表明,该策略可使综合等效醇耗降低1.47%。此外,考虑到工况频繁变化会降低甲醇重整效率,进一步设计了一种基于规则的供氢管理策略,维持甲醇重整器运行在高效率区,C-WTVC工况下综合等效醇耗降低3.82%。  相似文献   

14.
CH4/CO2催化重整制取合成气   总被引:2,自引:0,他引:2  
采用微型固定床反应装置,评价了现有工业上7种催化剂。考察了3771的焙烧温度、焙烧时间、还原温度、不 及反应温度对CH4/CO2催化重整反应性能的影响。使用该催化剂合成气的收率最高。  相似文献   

15.
利用常压微型固定床反应器,采用CuZnZrA lO甲醇重整制氢催化剂,考察了503~543K下甲醇停留时间(W/FA0)对CO2和CO转化率的影响,在排除内外扩散影响的条件下,采用甲醇直接重整和甲醇分解平行进行的反应途径,以CO和CO2为关键组分,建立了适合其在甲醇蒸汽重整制氢反应中使用的动力学模型,并利用最小二乘法确定了模型参数.F-检验表明所提出的动力学模型可作为反应器模拟分析和设计的基础.  相似文献   

16.
对燃料制氢技术的各种制氢方法和典型设备进行综述,明确随车燃料重整制氢技术的应用前景,并指出各种燃料重整方法的局限性.对蒸汽重整、部分氧化、自热重整、裂解、等离子裂解等技术进行归纳分析,针对随车燃料重整提出基于尾气的分类方法.  相似文献   

17.
考察了金属Ni担载量对Ni/Al2 O3、Ni/MgO/Al2 O3催化剂用于甲烷与二氧化碳重整反应活性的影响 ,结果表明 :Ni担载量对反应活性的影响受反应温度的制约 .在低担载量时 ,催化活性随Ni担载量的增加而增加 ,到 3%时CH4及CO2 转化率分别达到 10 0 %和88% ;但对高担载量催化剂如 2 0 %Ni/MgO/Al2 O3,高温时 (>10 73K)因Ni的聚集等使反应器堵塞 ,导致活性骤降 .与Ni/Al2 O3相比 ,Ni/MgO/Al2 O3具有更好的稳定性 .助剂对催化活性及稳定性也有一定影响 .各助剂对CH4转化的影响次序为 :La >Mn >Co >Fe .助剂的加入有助于Ni催化剂稳定性的提高 .  相似文献   

18.
在透氧膜反应器内对比分析了不加催化剂和添加 1 g 9% Ni/γ -Al2O3 催化剂的甲烷重整反应实验. 结果表明, 不加催化剂时甲烷相对较惰性; 而在催化剂的作用下, 甲烷重整活性得到了较大提高, 但是催化剂易积碳. 推测甲烷重整反应路径如下: 甲烷在催化剂活性组分上发生裂解, 产生氢和碳; 生成的氢与膜表面的氧反应生成 H2O,从而使得膜表面侧氧分压下降, 透氧量增大. 通过设计不同 Ni 含量 NiO/MgO 催化剂下的甲烷裂解和甲烷重整反应实验, 验证了以上的反应机理模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号