首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用臭氧氧化结合湿法喷淋对模拟玻璃窑炉烟气开展了同时脱硫脱硝实验研究.采用不同溶液(NaOH、Na2S)进行了喷淋实验.结果表明,保证溶液pH值在10以上,NaOH浓度对NOx脱除效率无影响,SO2的存在促进了NOx吸收.当O3/NO物质的量比为1.6、溶液NaOH浓度为0.5%时,NOx脱除效率可达70%,SO2脱除效率在99%以上.往喷淋液中添加Na2S,NOx脱除效率随Na2S浓度增加而提高,SO2的存在对NOx脱除效率无影响.当O3/NO物质的量比为1.2、溶液中NaOH浓度为0.5%、添加剂Na2S浓度为0.6%时,NOx脱除效率可达70%,SO2脱除效率在95%以上.60 min长时间运行实验证明,模拟烟气中的NOx经碱液和添加剂吸收后主要以NO-2的形式存在于喷淋液中,且NOx脱除效率不随溶液pH值的变化而变化.  相似文献   

2.
Current gas ionization discharge techniques used in the removal of NOx from waste gases require large plasma sources, have high energy consumption, and may feature low NOx removal rates. We develop a system to generate reactive oxygen species through a strong ionization discharge, which is injected into a flow of simulated waste gas. The relative proportions and temperatures of input gases were controlled and the rate of consumption by reactive species was monitored. HNO3 oxidization products of NOx were also collected and measured. The molar ratio of reactive oxygen species to NO was optimized to improve the rate of NOx removal. A input gas temperature of 58–60 °C was also found to be optimal. The O2 volume fraction has almost no influence on NOx removal, while H2O volume fractions above 6 %, gave rise to NOx removal rates of 97.2 %. The present study addresses disadvantages of current gas ionization discharge and requires no catalyst, reducing agent or oxidant.  相似文献   

3.
The electron beam (EB) technology has been investigated as a one-stage multi-component purification technology. The initial concentrations of SO2, NOx, and 16 polycyclic aromatic hydrocarbons (PAH) in flue gas have been reduced simultaneously by over 60%, 50%, and 20%, respectively, in flue gas at the dose of 8 kGy. Determined PAH distribution in the by-product has shown negligible role of adsorption in PAH removal. PAH-based overall toxicity of flue gas decreased remarkably in the range of 30–80% under EB irradiation.  相似文献   

4.
The photocatalytic methods for nitrogen oxides removal were recently very intense areas of scientific research. Photo-deNOx processes offer interesting ways for abatement of these harmful gases. This review describes several methods for removing NO by photocatalytic reactions. These methods can be classified into three major groups: photo selective catalytic reduction (photo-SCR), photo-oxidation and photo-decomposition. The application of photocatalysts and photo-processes for NOx abatement in real-scale cases are presented. The fast-growing development of these methods is revealed by the large number of issued patents in photo-deNOx applications. The mechanism of NO creation and the traditional methods (primary and secondary) of NOx removal are summarized and discussed. A cooperative system that combines the traditional (thermal) process and a photo-process is then proposed for improving NOx removal efficiency.  相似文献   

5.
A need exists for new technology for the disposal of concentrated NOx streams obtained from certain regenerable, dry scrubbing processes, such as the NOXSO process, and the removal and disposal of NOx from more dilute gas streams produced by nitric acid plants. It has been demonstrated that the facultative anaerobe and autotroph, Thiobacillus denitrificans, may be cultured anaerobically in batch reactors using NO (g) as a terminal electron acceptor. Thiosulfate served as an energy source, CO2 (g) as a carbon source, and ammonium ion as a source of reduced nitrogen. The growth of T.denitrificans was indicated by depletion of thiosulfate and ammonium ion and the accumulation of biomass. The feed gas consisted of 5000 ppmv NO, 5%, CO2, and balance nitrogen. The NO concentration in the outlet gas was typically 200 ppmv.  相似文献   

6.
(n)MnOx–(1?n)CeO2 binary oxides have been studied for the sorptive NO removal and subsequent reduction of NOx sorbed to N2 at low temperatures (≤150 °C). The solid solution with a fluorite-type structure was found to be effective for oxidative NO adsorption, which yielded nitrate (NO? 3) and/or nitrite (NO? 2) species on the surface depending on temperature, O2 concentration in the gas feed, and composition of the binary oxide (n). A surface reaction model was derived on the basis of XPS, TPD, and DRIFTS analyses. Redox of Mn accompanied by simultaneous oxygen equilibration between the surface and the gas phase promoted the oxidative NO adsorption. The reactivity of the adsorbed NOx toward H2 was examined for MnOx–CeO2 impregnated with Pd, which is known as a nonselective catalyst toward NO–H2 reaction in the presence of excess oxygen. The Pd/MnOx–CeO2 catalyst after saturated by the NO uptake could be regenerated by micropulse injections of H2 at 150 °C. Evidence was presented to show that the role of Pd is to generate reactive hydrogen atoms, which spillover onto the MnOx–CeO2 surface and reduce nitrite/nitrate adsorbing thereon. Because of the lower reducibility of nitrate and the competitive H2–O2 combustion, H2–NO reaction was suppressed to a certain extent in the presence of O2. Nevertheless, Pd/MnOx–CeO2 attained 65% NO-conversion in a steady stream of 0.08% NO, 2% H2, and 6% O2 in He at as low as 150 °C, compared to ca. 30% conversion for Pd/γ–Al2O3 at the same temperature. The combination of NOx-sorbing materials and H2-activation catalysts is expected to pave the way to development of novel NOx-sorbing catalysts for selective deNOx at very low temperatures.  相似文献   

7.
NOx removal characteristics and NO conversion trends were investigated for plasma process, catalytic process, and plasma catalytic hybrid process. In the experiments, we studied effects of the flow rate and the carrier gas on the NO conversion in the plasma process, and effects of ammonia concentration and temperature on the NOx removal in the catalytic process. We also investigated the synergetic effect of a plasma-catalytic hybrid process. Dielectric barrier discharge was combined with V2O5–WO3/TiO2 catalyst for removing nitrogen oxides. The maximum conversions of nitrogen oxides were approximately 52, 80, and 98% at the temperature of 100, 200, and 300°C, respectively. The optimal energy density, ammonia concentration, and ratio of nitrogen oxides exist for the highest removal of nitrogen oxides in the plasma catalytic hybrid process.  相似文献   

8.
The interaction of NO, NO+O2 and NO2 with K x Ga x Sn8?x O16 powder, including potassium ions, has been investigated by temperature-programmed desorption. In the case of NO+O2, NO x storage rapidly increased with increasing concentration of O2 and the main peak has high intensity with a maximum around 600°C. These results indicate that K x Ga x Sn8?x O16 has NO x storage ability with high thermal stability and is one of the promising catalysts for NO x storage reduction.  相似文献   

9.
Photochemical reactions of trace compounds in snow have important implications for the composition of the atmospheric boundary layer in snow-covered regions and for the interpretation of concentration profiles in snow and ice regarding the composition of the past atmosphere. One of the prominent reactions is the photolysis of nitrate, which leads to the formation of OH radicals in the snow and to the release of reactive nitrogen compounds, like nitrogen oxides (NO and NO2) and nitrous acid (HONO) to the atmosphere. We performed photolysis experiments using artificial snow, containing variable initial concentrations of nitrate and nitrite, to investigate the reaction mechanism responsible for the formation of the reactive nitrogen compounds. Increasing the initial nitrite concentrations resulted in the formation of significant amounts of nitrate in the snow. A possible precursor of nitrate is NO2, which can be transformed into nitrate either by the attack of a hydroxy radical or the hydrolysis of the dimer (N2O4). A mechanism for the transformation of the nitrogen-containing compounds in snow was developed, assuming that all reactions took place in a quasi-liquid layer (QLL) at the surface of the ice crystals. The unknown photolysis rates of nitrate and nitrite and the rates of NO and NO2 transfer from the snow to the gas phase, respectively, were adjusted to give an optimum fit of the calculated time series of nitrate, nitrite, and gas phase NOx with respect to the experimental data. Best agreement was obtained with a ∼25 times faster photolysis rate of nitrite compared to nitrate. The formation of NO2 is probably the dominant channel for the nitrate photolysis. We used the reaction mechanism further to investigate the release of NOx and HONO under natural conditions. We found that NOx emissions are by far dominated by the release of NO2. The release of HONO to the gas phase depends on the pH of the snow and the HONO transfer rate to the gas phase. However, due to the small amounts of nitrite produced under natural conditions, the formation of HONO in the QLL is probably negligible. We suggest that observed emissions of HONO from the surface snow are dominated by the heterogeneous formation of HONO in the firn air. The reaction of NO2 on the surfaces of the ice crystals is the most likely HONO source to the gas phase.  相似文献   

10.
Considering the significant importance in both ecological and environmental fields, converting nitrogen oxide(NOx, especially NO) into value-added NH3or harmless N2lies in the core of research over the past decades. Exploring catalyst for related gas molecular activation and highly efficient reaction systems operated under low temperature or even mild conditions are the key issues. Enormous efforts have been devoted to NO removal by utilizing various driving forces, such as thermal, electrical o...  相似文献   

11.
An experimental study on the removal of NOx in a simulated vehicle exhaust gas has been carried out using point to plane and multipoint to plane DBD corona reactors. Hydrocarbon (C3H6) and NOx by-products were systematically investigated with a Gas Chromatography coupled to a Mass Spectrometry (GC/MS). NOx (NO and NO2) and CO output were also monitored with a gas analyzer in order to complete the mass balance. 18O tracer technique analyzes is applied to investigate the mechanism of propylene decomposition. From the plasma chemical reaction pathway proposed, it is apparent that the oxygen activation is one of the important steps for initiating the oxidation processes and the R-NOx formation. We present data for the reaction of the (N2/O2/C3H6/CO2NO/H2O system in the corona discharge reactors mentioned above. This system has been shown to generate a significant amount of aldehyde. CH3NO2 and CH3ONO2 are the main R-NOx compounds produced. Reactant composition and discharge energy densities (controlled by a numerical oscilloscope) were the operating parameters under study in wet and dry air mixture. Water vapors played an important role in NOx removal (especially in NO2 removal) via the reaction forming HNO3. Therefore, in wet-gas mixture supplied reactors the highest removal rates of NOx were as high as 30%, while in dry-gas only 15%. Different dielectric materials such as Al2O3/SiO2 and TiO2 on Al2O3/SiO2 support have been used.  相似文献   

12.
We report here a new-type zirconia-based sensor that can detect total NOx content at high temperatures such as 700 °C. A closed-one-end yttria-stabilized zirconia (YSZ) tube was used as a base sensor material. An oxide sensing electrode (SE) and a Pt counter electrode (CE) were formed on the outer and inner surfaces of the YSZ tube, respectively. The complex impedance of the device using a ZnCr2O4-sensing electrode was measured with an impedance analyzer in the frequency and the temperature ranges 0.1 Hz–100 kHz and 600–700 °C, respectively. A large semicircular arc was observed in complex impedance plots (Cole–Cole plots) in the lower frequency range examined and it seemed to correspond to the electrolyte/electrode interface. The impedance value at 1 Hz of the present device was found to vary almost linearly with the concentration of NO (or NO2) from 50 to 400 ppm in the sample gas at 600–700 °C. Furthermore, it is noted that the sensitivity of NO is almost equal to that of NO2. This means that the present device can detect the total NOx at higher temperatures.  相似文献   

13.
The two types of electrochemical sensors using stabilized zirconia and the oxide sensing electrode (SE) were developed for NOx detection at high temperatures. For the mixed-potential-type sensor, NiCr2O4 was found to give fairly excellent NOx sensing characteristics in air among several spinel-type oxides tested. This NOx sensor provided a linear correlation between EMF and the logarithm of NO or NO2 concentration in the range 25–436 ppm and in the temperature range 550–650°C. With fixed bias voltage being applied between the SE (oxide) and the counter (Pt) electrode (CE), the EMF between SE and the reference (Pt) electrode (RE) was measured as a sensing signal. The NiCr2O4-attached tubular device was found to provide selective response to NO over NO2 if SE was polarized at +175 mV versus RE. It was also found that this device gave selective response to NO2 over NO, if SE was polarized at −250 mV versus CE. The new design of the planar device was proposed to avoid the cross-sensitivities to the others gases usually coexisting in car exhausts.  相似文献   

14.
Steady State Isotopic Transient Kinetic Analysis (SSITKA) experiments using on-line Mass Spectrometry (MS) and in situ Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (DRIFTS) have been performed to study essential mechanistic aspects of the Selective Catalytic Reduction of NO by H2 under strongly oxidizing conditions (H2-SCR) in the 120–300°C range over a novel 0.1 wt % Pt/MgO-CeO2 catalyst. The N-path of reaction from NO to the N2 gas product was probed by following the 14NO/H2O215NO/H2/O2 switch (SSITKA-MS and SSITKA-DRIFTS) at 1 bar total pressure. It was found that the N-pathway of reaction involves the formation of two active NO x species different in structure, one present on MgO and the other one on the CeO2 support surface. Inactive adsorbed NO x species were also found on both the MgO-CeO2 support and the Pt metal surfaces. The concentration (mol/g cat) of active NO x leading to N2 was found to change only slightly with reaction temperature in the 120–300°C range. This leads to the conclusion that other intrinsic kinetic reasons are responsible for the volcano-type conversion of NO versus the reaction temperature profile observed.  相似文献   

15.
The effect of O2 and H2O vapor on the Nitric oxide (NO) removal rate, the NO2 generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20°). The results showed that the O2 present in the flue gas always hampered the removal of NO and the generation of N2O, but that the O2 could enhance the generation of NO2 in the NO/N2/O2 mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H2O present in N2/NO hindered the removal of NO and the generation of NO2 but had no impact on the average discharge current in the reactor in the NO/N2/H2O mixtures in which the HNO2 and HNO3 was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.  相似文献   

16.
Natural mordenite (NMOR), modified by acid treatment and ion‐exchange, was employed for NO adsorption in the present study. The NO storage capacity of modified NMOR was greatly improved compared with its original correspondents, mainly due to the preservation of crystalline structure and the improvement of surface area of NMOR. Among all the modified NMOR, Ni‐NMOR exhibited the highest adsorption capacity for NO (1.20 mmol·g?1) in the presence of 10% O2 at 308 K. The influence of the main ingredients in flue gas on the storage capacity of NMOR for NO had also been investigated. In general, H2O, CO2 and SO2 all displayed negative impact on NO adsorption due to their competitive adsorption on the surface of NMOR with NO, while the presence of O2 greatly improved the adsorption of NO because of the formation of NO2 and N2O3. Moreover, Ni‐NMOR exhibited high efficiency for NOx removal through the NOx adsorption‐plasma discharge process.  相似文献   

17.
As a kind of volatile organic compound, styrene is a typical industrial pollutant with high toxicity and odorous smell. In this study, the removal of malodorous styrene simulation waste gas was carried out in a self-made wire-tube dielectric barrier discharge reactor. The decomposition efficiency of the reaction was investigated under different applied voltages and flow rates. The results showed that nearly 99.6 % of styrene could be removed with a concentration of 3,600 mg/m3 and the applied voltage of 10.8 kV. However, the selectivity of CO2 and CO showed that the mineralization efficiency of styrene was less than 25 %. The by-products of the reaction, including O3, NO x and other intermediates, were also detected and analyzed under different applied voltages. The relationships between the applied voltage and the quantity of final product (CO2) and by-products (intermediate organics, NO x , O3) were investigated. The reaction mechanism was also described according to the bond energy and the intermediates that formed.  相似文献   

18.
《中国化学快报》2021,32(10):2963-2974
The simultaneous removal of SO2, NOx and Hg0 from industrial exhaust flue gas has drawn worldwide attention in recent years. A particularly attractive technique is selective catalytic reduction, which effectively removes SO2, NOx and Hg0 at low temperatures. This paper first reviews the simultaneous removal of SO2, NOx and Hg0 by unsupported and supported catalysts. It then describes and compares the research progress of various carriers, eg., carbon-based materials, metal oxides, silica, molecular sieves, metal-organic frameworks, and pillared interlayered clays, in the simultaneous removal of SO2, NOx and Hg0. The effects of flue-gas components (such as O2, NH3, HCl, H2O, SO2, NO, and Hg0) on the removal of SO2, NOx, and Hg0 are discussed comprehensively and systematically. After summarizing the pollutant-removal mechanism, the review discusses future developments in the simultaneous removal of SO2, NOx and Hg0 by catalysts.  相似文献   

19.
There is a strong interest in finding highly soluble redox compounds to improve the energy density of redox flow batteries (RFBs). However, the performance of electrolytes is often negatively influenced by high solute concentration. Herein, we designed a high-potential (0.5 V vs. Ag/Ag+) catholyte for RFBs, where the charged and discharged species are both gaseous nitrogen oxides (NOx). These species can be liberated from the liquid electrolyte and stored in a separate gas container, allowing scale-up of storage capacity without increasing the concentration and volume of the electrolyte. The oxidation of NO in the presence of NO3 affords N2O3, and the reduction of N2O3 regenerates NO and NO3, together affording the electrochemical reaction: NO3+3 NO⇌2 N2O3+e with a low mass/charge ratio of 152 grams per mole of stored electron. A proof-of-concept NOx symmetric H-cell shows 200 stable cycles over 400 hours with >97 % Coulombic efficiency and negligible capacity decay.  相似文献   

20.
The catalytic properties of the Mn-Fe-Beta system with Mn contents in the range 0.1–16 wt.% were studied in the selective catalytic reduction (SCR) of NO x with ammonia. The catalyst structure was investigated using IR spectra of adsorbed NO, temperature-programmed reduction with hydrogen (H2-TPR), X-ray diffraction analysis, and ESR. The use of manganese as a promoter substantially increases the activity of iron-containing catalysts in the SCR of NO x with ammonia. At low contents (<2 wt.%), Mn exists in the cation form and the catalytic activity of the Mn-Fe-Beta system does not increase. At a higher content of Mn, clusters MnO x begin to form, which are highly active in the oxidation of NO to NO2 and the low-temperature catalytic activity of the Mn-Fe-Beta system increases. The observed increase in the low-temperature catalytic activity in the process of SCR of NO x with ammonia is related to a change in the reaction route. The MnO x clusters favor the oxidation of NO and the iron cations facilitate the reaction of “fast” SCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号