首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 126 毫秒
1.
Gelatin hydrogel pads have been prepared from a 10 wt.‐% gelatin solution that contained 2.5 wt.‐% AgNO3 in 70% v/v acetic acid by a solvent‐casting technique. The AgNO3‐containing gelatin solution was aged under mechanical stirring for various time intervals to allow for the formation of silver nanoparticles (nAgs). The formation of nAgs was monitored by a UV‐vis spectrophotometer. The morphology and size of the nAgs were characterized by transmission electron microscopy (TEM). To improve the water resistance of the hydrogels, various contents of glutaraldehyde (GTA) were added to the AgNO3‐containing gelatin solution to cross‐link the obtained gelatin hydrogels. These hydrogels were tested for their water retention and weight loss behavior, release characteristics of the as‐loaded silver, and antibacterial activity against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. The AgNO3‐containing gelatin solution that had been aged for 5 d showed the greatest number of nAgs formed. The size of these particles, based on TEM results, was 10–11 nm. With an increase in the GTA content used to cross‐link the hydrogels, the water retention, the weight loss, and the cumulative amount of silver released were found to decrease. Finally, all of the nAg‐loaded gelatin hydrogels could inhibit the growth of the tested pathogens, which confirmed their applicability as antibacterial wound dressings.

  相似文献   


2.
《中国化学快报》2022,33(12):5030-5034
Diabetic wounds lead to a decrease in quality of life and an increase in mortality. Current treatment strategies include preventing bacterial adhesion while improving microcirculation. As a new type of wound dressing that imitates natural skin, hydrogel has gradually emerged with its excellent properties. However, existing hydrogels rarely achieve satisfactory results in promoting wound repair and antibacterial simultaneously. In this case, we prepared methacrylic anhydride chemically modified hyaluronic acid as a hydrogel matrix, added polyhexamethylene biguanide as an antibacterial component, and loaded sodium alginate/salidroside composite microspheres which could sustainably release salidroside and thus promote angiogenesis. Hybrid hydrogel (HAMA/PHMB-Ms) was synthesized via photocrosslinking, and its chemical structure, particle size distribution and microstructure were characterized. The satisfactory antibacterial properties of the HAMA/PHMB(15%)-Ms hydrogel were studied in vitro, and its antibacterial rates against E. coli and S. aureus were 97.85% and 98.56%, respectively. In addition, after demonstrating its good biocompatibility, we verified that the HAMA/PHMB-Ms hydrogel has increased granulation tissue formation, more collagen deposition, more subcutaneous capillary formation, and better wound healing than blank control, HAMA and HAMA/PHMB hydrogel on the back wound model of diabetic mice. The results confirmed that HAMA/PHMB-Ms hydrogel was a promising material for the treatment of the diabetic wounds.  相似文献   

3.
In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing.In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV–vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.  相似文献   

4.
Biodegradable poly(l-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.  相似文献   

5.
The repair of critical-sized bone defects remains a major concern in clinical care. Herein, a multifunctional hydrogel is rationally designed to synergistically photothermal antibacterial and potentiate bone regeneration via adding magnesium oxide nanoparticle and black phosphorus nanosheet (BPNS) into poly(vinyl alcohol)/chitosan hydrogel (PVA/CS-MgO-BPNS). Under the dual effect of near-infrared irradiation and CS intrinsic antibacterial properties, PVA/CS-MgO-BPNS hydrogel can kill more than 99.9% of Staphylococcus aureus and Escherichia coli. The released Mg ions stimulate the migration of mesenchymal stem cells (MSCs) to hydrogels and synergize with released phosphate to promote osteogenic differentiation. The PVA/CS-MgO-BPNS hydrogel also promotes calcium phosphate particle formation and therefore improves the biomineralization ability. Furthermore, the potential molecular mechanism of PVA/CS-MgO-BPNS to regulate MSCs migration and differentiation is through activating phosphoinositide 3-kinase (PI3K)-Akt signaling pathways through RNA-seq analysis. Finally, the PVA/CS-MgO-BPNS hydrogel could significantly promote endogenous bone tissue regeneration in the rat skull defect model. Taken together, this easy fabricated multifunctional hydrogel has good clinical applicability for the repair of large-scale bone defects.  相似文献   

6.
Blend hydrogels composed of carboxymethyl chitosan (CMCh) and poly (acrylonitrile) (PAN) were synthesized via crosslinking method. Several analyses were made to investigate both physical and thermal properties of CMCh/PAN hydrogels like; FTIR, scanning electron microscope, XRD and thermogravimetric analysis (TGA). TGA results showed that CMCh/PAN hydrogels are thermally more stable than CMCh and their thermal stability increases as PAN content increases in the hydrogel. Moreover, the swelling behavior of CMCh/PAN hydrogels was studied in different buffer solutions. It was found that CMCh/PAN hydrogels swell much more than PAN especially at pH 9. The hydrogels sorption for different dyestuff and various metal ions like; Cu2+, Cd2+ and Co2+ were also studied. In this work, antibacterial characteristic of hydrogels was mainly investigated towards Escherichia coli (E. coli) as a serious disease-leading bacterium. All tested hydrogels have clearly presented good antibacterial activity as CMCh content increases in the hydrogels.  相似文献   

7.
The present research is based on the fabrication preparation of CS/PVA/GG blended hydrogel with nontoxic tetra orthosilicate (TEOS) for sustained paracetamol release. Different TEOS percentages were used because of their nontoxic behavior to study newly designed hydrogels’ crosslinking and physicochemical properties. These hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and wetting to determine the functional, surface morphology, hydrophilic, or hydrophobic properties. The swelling analysis in different media, degradation in PBS, and drug release kinetics were conducted to observe their response against corresponding media. The FTIR analysis confirmed the components added and crosslinking between them, and surface morphology confirmed different surface and wetting behavior due to different crosslinking. In various solvents, including water, buffer, and electrolyte solutions, the swelling behaviour of hydrogel was investigated and observed that TEOS amount caused less hydrogel swelling. In acidic pH, hydrogels swell the most, while they swell the least at pH 7 or higher. These hydrogels are pH-sensitive and appropriate for controlled drug release. These hydrogels demonstrated that, as the ionic concentration was increased, swelling decreased due to decreased osmotic pressure in various electrolyte solutions. The antimicrobial analysis revealed that these hydrogels are highly antibacterial against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram negative (Pseudomonas aeruginosa and Escherichia coli) bacterial strains. The drug release mechanism was 98% in phosphate buffer saline (PBS) media at pH 7.4 in 140 min. To analyze drug release behaviour, the drug release kinetics was assessed against different mathematical models (such as zero and first order, Higuchi, Baker–Lonsdale, Hixson, and Peppas). It was found that hydrogel (CPG2) follows the Peppas model with the highest value of regression (R2 = 0.98509). Hence, from the results, these hydrogels could be a potential biomaterial for wound dressing in biomedical applications.  相似文献   

8.
Chen  Gong  Han  Tingting  Xiang  Zhouyang  Song  Tao 《Cellulose (London, England)》2022,29(10):5833-5851

The size of silver nanoparticles (AgNPs) is the key factor that governs their antibacterial activity. However, the size of AgNPs is difficult to control because agglomeration and uneven dispersion often occur during the processing of AgNP-based products, which has impeded their applications in different areas. In this work, an efficient strategy was developed to overcome this difficulty and to prepare an antibacterial hydrogel comprising AgNPs and chitosan (CS) with dialdehyde xylan (DAX) as the crosslinking agent. The size of AgNPs was controlled successfully to an extremely fine level (<?9 nm) by reducing AgNO3 solution in a methanolic suspension of the metal organic framework (MOF) -UiO-66-NH2, and forming an Ag@UiO-66-NH2 core–shell structure which avoided the agglomeration of AgNPs. DAX played a dual role by forming a hydrogel structure with CS through crosslinking, but also by stabilizing the even dispersion of Ag@UiO-66-NH2 in the hydrogel. Accordingly, the as-prepared hydrogels showed excellent antibacterial properties and low cytotoxicity. The survival ratio of NIH/3T3 cells cultured in the hydrogel extract was more than 90%, even when the concentration of the hydrogel extract was as high as 10 mg/mL. In addition, the hydrogel exhibited good abilities of water absorption (swelling ratio was up to 1100%) and self-healing (efficiency was up to 88% after 5 h). The hydrogels with size-well-controlled AgNPs prepared in this work are expected to find broad applications, especially in the area of antibacterial medical auxiliaries.

  相似文献   

9.
A shear-thinning and self-healing hydrogel based on a gelatin biopolymer is synthesized using vanillin and Fe3+ as dual crosslinking agents. Rheological studies indicate the formation of a strong gel found to be injectable and exhibit rapid self-healing (within 10 min). The hydrogels also exhibited a high degree of swelling, suggesting potential as wound dressings since the absorption of large amounts of wound exudate, and optimum moisture levels, lead to accelerated wound healing. Andrographolide, an anti-inflammatory natural product is used to fabricate silver nanoparticles, which are characterized and composited with the fabricated hydrogels to imbue them with anti-microbial activity. The nanoparticle/hydrogel composites exhibit activity against Escherichia coli, Staphylococcus aureus, and Burkholderia pseudomallei, the pathogen that causes melioidosis, a serious but neglected disease affecting southeast Asia and northern Australia. Finally, the nanoparticle/hydrogel composites are shown to enhance wound closure in animal models compared to the hydrogel alone, confirming that these hydrogel composites hold great potential in the biomedical field.  相似文献   

10.
A novel synthesized Ag/C fibrous catalyst based on in situ thermally induced redox reaction of PVA/AgNO3 composite fibers was proposed. Utilizing the plasticization and complexation of AgNO3 solution, the melt spinning of PVA/AgNO3 composites was accomplished. Through the in situ thermally induced redox reaction on PVA/AgNO3 composite fibers combined with carbonization of PVA and reduction of Ag+, the synthesized Ag/C fibrous catalyst was prepared with nanosilver particles with average diameter of 130 nm immobilized on the loose microstructural carbon layers. The synthesized Ag/C fibrous catalyst exhibited excellent catalytic activity and reused for at least five cycles for the reduction of 4‐nitrophenol, which may hold great promise in effective and eco‐friendly waste water treatment.  相似文献   

11.
Synthesis and biomedical research of bimetallic gold-silver nanoparticles (Au–Ag NPs) have gained much attention due to their unique properties. Antibacterial mechanism of gold-silver nanoparticles is a current topic of interest in nanomedicine engineering. We used three routes in the synthesis of Au–Ag NPs alloy: i) Co-reduction of [HOOC-4-C6H4NN]AuCl4/AgNO3, ii) Seeding of AuNPs-COOH/AgNO3 and iii) immobilization of AgNPs over the parent AuNPs-COOH. Two mild reducing agents, NaBH4 and 9-BBN (9-borabicyclo(3.3.1)nonane), were used. Colloidal alloy nanoparticles structure was confirmed using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The particles reduced using NaBH4 were larger (~20 nm) than those synthesized using 9-BBN (<10 nm). The synthesized nanoparticles showed high stability under notoriously leaching conditions of chloride-containing electrolytes. Moreover, we studied the Au–Ag NPs antibacterial activity against the growth of Gram-negative Escherichia coli ATCC strain 25922 and Gram-positive Staphylococcus aureus ATCC strain 29213. The antibacterial mechanisms were evaluated by studying the time-dependent generation of reactive oxygen species (ROS). A major destruction of the bacterial cell wall and leakage of cell components were observed by scanning electron microscopy (SEM), which is clearly visible towards E. coli more than S. aureus bacterial strain. The destruction of the bacterial cell wall was further confirmed by detecting the DNA leakage using gel electrophoresis. The synergistic effect of gold enhanced the antibacterial properties, however, with low cytotoxicity to human dermal fibroblast cells. This study deals with the important aspects of time-dependent mechanisms of the antibacterial action of Au–Ag NPs since the leaching out of Ag ion is slow compared to AgNPs. The Au–Ag NPs alloy efficiently tackles microbial activity that can be controlled to minimize cytotoxicity and thus opens their future applications as antibacterial agents.  相似文献   

12.
Novel hybrid polyvinyl butyral nanofibers have been developed for antimicrobial applications. The nanofiber mats were obtained from a needleless rod electrospinning system. The novel inorganic antibacterial agents were incorporated into the nanofibers, and their antibacterial activity was compared. The obtained nanoparticle/nanofiber hybrid mats have a good surface morphology. The results indicated that the CuO, ZnO, ZnO/TiO2, and AgNO3 nanoparticle‐incorporated nanofiber layers have excellent antibacterial activity against to Escherichia coli compared with TiO2, SnO2, and ZrO2 ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Novel physically crosslinked graphene oxide (GO)‐gelatin nanocomposite hydrogels were obtained by self‐assembly. The hydrogels with various ratios of GO to gelatin were prepared, and characterized by X‐ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy. The static and dynamic rheological properties of the hydrogels were investigated, along with the underlying hydrogel formation mechanisms. The storage modulus of the hydrogels (containing 98–98.5 wt % water) reached 114.5 kPa, owing to the relatively strong physical bonding (i.e., hydrogen bonding and electrostatic forces) between GO and gelatin. Drug release tests showed that the drug release from the hydrogel was pH‐dependent, with 96% of the model drug released in a neutral environment, compared to 28% released in an acidic medium. These hydrogels could have potential in pH‐sensitive drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 356–367  相似文献   

14.
In the present work, silver nanoparticles were in situ-generated in cellulose matrix using Ocimum sanctum leaf extract as a reducing agent. Regenerated wet cellulose films were first immersed in O. sanctum leaf extract and then it was allowed to diffuse into the films. The leaf extract–diffused wet films were dipped in different concentrated aq.AgNO3 solutions. The leaf extract inside the wet films reduced AgNO3 into nanosilver. The dry composite films were black in color. Some of the nanoparticles were also formed outside the film in the solution. The nanoparticles were viewed by transmission electron microscopy and scanning electronic microscopy techniques. The composite films showed good antibacterial activity. The cellulose, matrix, and the composite films were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis techniques. The tensile properties of the composite films were higher than those of the matrix. These biodegradable films can be used for packaging and medical purposes.  相似文献   

15.
采用H2O2-Vc氧化还原体系引发半纤维素衍生物,以表面修饰的Fe3O4粒子作为磁性组分,利用接枝共聚方法制备了新型半纤维素基磁性水凝胶. 分别用傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对水凝胶的结构及形貌进行了表征,利用X射线衍射(XRD)和振动样品磁强计(VSM)对水凝胶的晶型结构及磁性能进行了分析,发现Fe3O4粒子均匀分散在凝胶网络中,半纤维素基磁性水凝胶表现出良好的顺磁性. 考察了丙烯酸/半纤维素比例、Fe3O4粒子含量及交联剂用量对水凝胶溶胀性能的影响,并探讨了该水凝胶的溶胀机理,它在pH 8 缓冲溶液中的溶胀较好符合Fickian 和Schott 动力学模型. 通过SEM和溶胀性能分析表明,随着pH值的升高水凝胶的孔径增大,水凝胶的溶胀率逐渐增大. 制备的水凝胶被用于溶菌酶吸附研究,结果表明磁性凝胶的吸附量大于非磁性水凝胶,水凝胶的吸附行为符合Freundlich 和Temkin 等温模型.  相似文献   

16.
A series of poly(acrylic acid-co-acrylamide) (PAA)/SiO2 hybrid hydrogels were prepared by in situ frontal polymerization. It was found that the increase in the concentration of SiO2 nanoparticles could lead to the increase in front velocity (V f) and the highest front temperature (T max). This may be attributed to the fact that SiO2 nanoparticles could increase the liquid viscosity of reaction mixture. The obtained PAA/SiO2 hybrid hydrogels were characterized by SEM and Fourier transform infrared spectroscopy spectrum and swelling measurements. The pH-sensitive swelling behaviors showed that the prepared PAA/SiO2 hybrid hydrogel had high pH sensitivity in different pH buffer solutions. Mechanical property test indicated that the PAA/SiO2 hybrid hydrogels exhibited a high compressive strength while remaining a high swelling radio (SR). The maximum of compressive strength and SR of the hybrid hydrogel may reach 42.6 kPa and 17.8, respectively, which was much higher than that of pure PAA hydrogel.  相似文献   

17.
The present study focuses on the biological synthesis, characterization, and antibacterial activities of silver nanoparticles (AgNPs) using extracellular extracts of Aspergillus japonicus PJ01.The optimal conditions of the synthesis process were: 10 mL of extracellular extracts, 1 mL of AgNO3 (0.8 mol/L), 4 mL of NaOH solution (1.5 mol/L), 30 °C, and a reaction time of 1 min. The characterizations of AgNPs were tested by UV-visible spectrophotometry, zeta potential, scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric (TG) analyses. Fourier transform infrared spectroscopy (FTIR) analysis showed that Ag+ was reduced by the extracellular extracts, which consisted chiefly of soluble proteins and reducing sugars. In this work, AgNO3 concentration played an important role in the physicochemical properties and antibacterial properties of AgNPs. Under the AgNO3 concentration of 0.2 and 0.8 mol/L, the diameters of AgNPs were 3.8 ± 1.1 and 9.1 ± 2.9 nm, respectively. In addition, smaller-sized AgNPs showed higher antimicrobial properties, and the minimum inhibitory concentration (MIC) values against both E. coli and S. aureus were 0.32 mg/mL.  相似文献   

18.
为避免物理交联明胶基水凝胶的热不稳定性,以及化学方法交联明胶基水凝胶存在的毒性,本文采用丙烯酰化的方法将甲基丙烯酸酐(MA)与明胶反应,在明胶分子链上引入双键结构,并且实现了紫外光照射引发甲基丙烯酰胺基明胶(GelMA)与聚乙二醇双丙烯酸酯(PEGDA)共聚交联制备水凝胶。研究了不同的MA加入量对明胶修饰度的影响,并对GelMA/PEGDA交联水凝胶理化性质进行了测试和分析。结果表明:体系中PEGDA含量增加,能释放更多的自由基,增加交联反应的活性和程度,使水凝胶形成更加致密的三维网络结构。并且GelMA/PEGDA交联水凝胶在37℃比GelMA交联水凝胶更加稳定。GelMA/PEGDA交联水凝胶将来有望成为组织工程的支架材料。  相似文献   

19.
Hydrogel antibacterial agent is an ideal antibacterial material because of its ability to diffuse antibacterial molecules into the decayed area by providing a suitable microenvironment and acting as a protective barrier on the decay interface. The biocompatibility and biodegradation make the removal process easy and it is already widely used in medical fields. However, there have been few reports on its application for controlling postharvest diseases in fruit. In this study, the Chitosan–silver (CS–Ag) complex hydrogels were prepared using the physical crosslinking method, which is used for controlling postharvest diseases in grape. The prepared hydrogels were stable for a long period at room temperature. The structure and surface morphology of CS–Ag composite hydrogels were characterized by UV-Vis, FTIR, SEM, and XRD. The inhibitory effects of CS–Ag hydrogel on disease in grape caused by P. expansum, A. niger, and B. cinerea were investigated both in vivo and in vitro. The remarkable antibacterial activity of CS–Ag hydrogels was mainly due to the combined antibacterial and antioxidant effects of CS and Ag. Preservation tests showed that the CS–Ag hydrogel had positive fresh-keeping effect. This revealed that CS–Ag hydrogels can play a critical role in controlling fungal disease in grapes.  相似文献   

20.
Hydrogels have been employed in regenerative treatments for decades because of their biocompatibility and structural similarity to the native extracellular matrix. Injectable hydrogels with interconnected porosity and specific internal structures are momentous for tissue engineering. Here, we develop a group of injectable hydrogels comprised of oxidized alginate (OA)/gelatin (GEL) strengthened by modifying the amount of Zn2SiO4 nanoparticles. The physicochemical characteristics of OA/GEL/Zn2SiO4 hydrogels were studied by mechanical strength, swelling ratio, and morphology. The outcomes revealed that the mechanical characteristics of hydrogels containing a higher amount of Zn2SiO4 (0.12 wt%) improved more than five times than the hydrogels fabricated without Zn2SiO4. The in vitro degradation outcomes manifested the degradation of the hydrogel comprising 0.12 wt% Zn2SiO4 NPs was slower than one without NPs, and remaining masses of hydrogels depend on different contents of Zn2SiO4 NPs. The hydrogel containing Zn2SiO4 NPs exhibited less cytotoxicity and good cell attachment than the hydrogels prepared without the nanoparticles. The cell viability and attachment show that the nanocomposite hydrogels are biocompatible (>96%) with great cell adhesion to osteosarcoma cell line MG63 depending on the presence of Zn2SiO4. The superior physical, chemical as well as mechanical characteristics of the hydrogels containing Zn2SiO4 NPs along with their cytocompatibility suggest that they can introduce as good candidates as scaffolds in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号