首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bibimbap, Korean traditional cooked rice mixed with various kinds of vegetables, together with mushrooms and a ground meat, and seasoned with red pepper paste, was developed as a ready-to-cook food by combined treatment with irradiation for the use in space. By gamma irradiation of 25 kGy, the total aerobic bacteria of Bibimbap that was initial by 6.3 log CFU/g decreased to below detection limit, but its sensory qualities were drastically decreased. To enhance the sensory quality, the effects of antioxidant in Bibimbap were evaluated. A treatment with 0.1% of vitamin C, vacuum packaging and gamma-irradiated at 25 kGy and ?70 °C showed higher sensory scores than only the irradiation process. This result indicates that the radiation technology may be useful to produce a variety of space foods with high quality of taste and flavor, when combined with other methods.  相似文献   

2.
Lycium fruit, popular traditional Chinese medicine and food supplement generally is ingested uncooked, was exposed to several doses of gamma irradiation (0–14 kGy) to evaluate decontamination efficiency, changes in chemical composition, and changes in sensory characteristic. In this study, lycium fruit specimens contained microbial counts of 3.1×103–1.7×105 CFU/g and 14 kGy was sufficient for microbial decontamination. Before irradiation, the main microbe isolated from lycium fruit was identified as a strain of yeast, Cryptococcus laurentii. After 10 kGy of irradiation, a Gram-positive spore-forming bacterium, Bacillus cereus, was the only survivor. The first 90% reduction (LD90) of C. laurentii and B. cereus was approximately 0.6 and 6.5 kGy, respectively, the D10 doses of C. laurentii and B. cereus was approximately 0.6 and 1.7 kGy, respectively. After 14 kGy irradiation, except the vitamin C content, other chemical composition (e.g., crude protein, β-carotene, riboflavin, fructose, etc.) and the sensory characteristic of lycium fruit specimens did not have significant changes. In conclusion, 14 kGy is the optimal decontamination dose for lycium fruit for retention of its sensory quality and extension of shelf life.  相似文献   

3.
The purpose of this study was to evaluate microbial populations, Hunter's color values (L?, a?, b?) and the sensory quality of freeze-dried miyeokguk, Korean seaweed soup, in order to use it as space food. Microorganisms were not detected in non-irradiated freeze-dried miyeokguk within the detection limit of 1.00 log CFU/g. However, the microbial population in rehydrated miyeokguk was 7.01 log CFU/g after incubation at 35 °C for 48 h, indicating that freeze-dried miyeokguk was not sterilized by heat treatment during the preparation process. Bacteria in the freeze-dried miyeokguk were tentatively identified as Bacillus cereus, B. subtilis, Enterobacter hormaechei, and Ancinetobacter genomosp. using the 16S rDNA sequencing. In samples that were gamma-irradiated above 10 kGy, it was confirmed that all microorganisms were inactivated. Hunter's color values of the samples irradiated at doses less than 10 kGy were not significantly altered from their baseline appearance (p>0.05). Sensory evaluation showed that preference scores in all sensory properties decreased when freeze-dried miyeokguk was irradiated at doses greater than 10 kGy. Therefore, the results of this study suggest that gamma irradiation at 10 kGy is sufficient to sterilize freeze-dried miyeokguk without significant deterioration in the sensory quality, and thus, the freeze-dried and irradiated miyeokguk at 10 kGy fulfills the microbiological requirements as space food.  相似文献   

4.
The objective of this study was to evaluate the effect of a concentrated fermented dextrose (FD), a natural antimicrobial product, combined with low dose γ-irradiation (1.5 kGy) on the microbiological quality of fresh pork sausages. Fresh pork sausages containing the FD (0.25%, 0.5% and 0.75%) were prepared in a meat pilot plant and were irradiated using a UC-15A irradiator equipped with a 60Cobalt source. The γ-irradiation treatment alone was able to reduce the initial psychrophilic and mesophilic bacteria by more than 2 log CFU/g and kept the lactobacillus population under the detection limit (100 CFU/g). Results also showed that the FD alone was able to extend the shelf life of the sausages from 5 days up to 13 days. At day 13, the FD or irradiation alone showed 2 log CFU/g less mesophilic bacteria than the control. After combining FD and irradiation another reduction of the microbial count of 1 log CFU/g was observed. When combining the irradiation treatment with the FD results it showed a reduced growth rate of the psychrophilic and mesophilic bacteria compared to both treatments alone. This study demonstrated that FD with low dose gamma irradiation act in synergy to reduce the multiplication of the total bacterial flora in fresh sausages.  相似文献   

5.
The goal of this study was to test the efficacy of irradiation on destroying Salmonella on raw almonds and evaluating the resultant sensory changes in the almonds. Raw almonds inoculated with various strains of Salmonella were irradiated at 5 dose levels up to 3 kGy and the D value was determined. The strain SEPT30 was the most resistant strain with a D value of 1.25 kGy indicating that a 4 log CFU/g reduction would require a dose of 5.0 kGy. Irradiation at 2.98 and 5.25 kGy induced significant sensory changes in almond nuts as manifested by intensity of chemical/metallic/rancid flavor ranked by a trained panel. A consumer panel found that samples treated with 5.25 kGy irradiation rendered the almonds unacceptable. Thus, irradiation by itself is unlikely to be a feasible method to eliminate Salmonella from raw almonds.  相似文献   

6.
Inactivation of Enterobacter sakazakii, Bacillus cereus, and Salmonella typhimurium were evaluated in powdered weaning food using electron-beam irradiation. E. sakazakii, B. cereus, and S. typhimurium were eliminated by irradiation at 16, 8, and 8 kGy, respectively. The D10-vlaues of E. sakazakii, B. cereus, and S. typhimurium inoculated on powdered weaning food were 4.83, 1.22, and 0.98 kGy, respectively. The results suggest that electron-beam irradiation should inhibit the growth of pathogenic bacteria on baby food without impairing qualities.  相似文献   

7.
The objective of this study was to identify the efficacy of gamma and electron beam irradiation of the food-borne pathogens (Listeria monocytogenes and Staphylococcus aureus) in sliced and pizza cheeses commercially available in the Korean market. Total aerobic bacteria and yeast/mold in the cheeses ranged from 102 to 103 Log CFU/g. Irradiation of 1 kGy for sliced cheese and 3 kGy for pizza cheese were sufficient to lower the total aerobic bacteria to undetectable levels (101 CFU/g). Pathogen inoculation test revealed that gamma irradiation was more effective than electron beam irradiation at the same absorbed dose, and the ranges of the D10 values were from 0.84 to 0.93 kGy for L. monocytogenes and from 0.60 to 0.63 kGy for S. aureus. Results suggest that a low dose irradiation can improve significantly the microbial quality and reduce the risk of contamination of sliced and pizza cheeses by the food-borne pathogens which can potentially occur during processing.  相似文献   

8.
In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106–107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105–106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.  相似文献   

9.
This study evaluated the effect of gamma irradiation on Burkholderia thailandensis (Burkholderia pseudomallei surrogate; potential bioterrorism agent) survival under different levels of NaCl and pH. B. thailandensis in Luria Bertani broth supplemented with NaCl (0–3%), and pH-adjusted to 4–7 was treated with gamma irradiation (0–0.5 kGy). Surviving cell counts of bacteria were then enumerated on tryptic soy agar. Data for the cell counts were also used to calculate D10 values (the dose required to reduce 1 log CFU/mL of B. thailandensis). Cell counts of B. thailandensis were decreased (P<0.05) as irradiation dose increased, and no differences (P≥0.05) in cell counts of the bacteria were observed among different levels of NaCl and pH. D10 values ranged from 0.04 to 0.07 kGy, regardless of NaCl and pH level. These results indicate that low doses of gamma irradiation should be a useful treatment in decreasing the potential bioterrorism bacteria, which may possibly infect humans through foods.  相似文献   

10.
In the present study, initial microbial load of instant cup noodle (ICN) was investigated and gamma irradiation applied to develop immuno-compromised patients food for their safe consumption. The initial microbial population of dried vegetable and meat, and noodle was below the detection limit (1 log CFU/g); however, that of seasoning powder was just above 4 log CFU/g. Moreover, rehydrated-ICN with water at 100 °C still show above 3 log CFU/g of microbial load, which indicates the need for an additional process to control microbial safety of the seasoning powder. The total aerobic bacteria in seasoning powder and rehydrated-ICN could be controlled with 17 kGy gamma irradiation. This result referred 17 kGy gamma irradiation could reach ‘practical sterility’ of ICN. The overall difference in sensory properties between the non-irradiated and irradiated ICN was insignificant. Thus, gamma irradiation could improve the microbial quality of ICN, and reduce the risk of infection posed by the seasoning powder, without any adverse effects on their sensory quality. These results suggest that gamma-irradiated ICN can be used as a snack food for immuno-compromised patients.  相似文献   

11.
In this research, the effect of gamma irradiation on the inactivation of Escherichia coli O157:H7 (ATCC 33150), Staphylococcus aureus (ATCC 2392) and Salmonella typhimurium (NRRL 4463) inoculated into Tekirdag meatballs was investigated. The meatball samples were inoculated with pathogens and irradiated at the absorbed doses of 1, 2.2, 3.2, 4.5 and 5.2 kGy. E. coli O157:H7 count in 1 kGy irradiated meatballs stored in the refrigerator for 7 days was detected to be 4 log cfu/g lower than the count in nonirradiated samples (p<0.05). S. aureus counts were decreased to 4 log cfu/g after being exposed to irradiation at a dose of 1 kGy. Although it was ineffective on elimination of S. typhimurium, irradiation at a dose of 3.2 kGy reduced E. coli O157:H7 and S. aureus counts under detectable values in the meatballs. However, none of the test organisms were detected in the samples after irradiation with 4.5 kGy doses.  相似文献   

12.
This study evaluated effect of gamma irradiation on survival of Salmonella Typhimurium and Staphylococcus aureus on lettuce and damage of cell envelope. S. Typhimurium and S. aureus were inoculated on red leaf lettuce, and they were irradiated at 0, 0.5, 1, 1.5, 2, 2.5, and 3 kGy, and the samples were then stored at 7 and 25 °C for 7 days. Survival of S. Typhimurium and S. aureus were enumerated on xylose lysine deoxycholate agar and Baird–Parker agar, respectively. D10 value (dose required to reduce 1 log CFU/leaf) was calculated, and kinetic parameters (maximum specific growth rate; μmax and lag phase duration; LPD) were calculated by the modified Gompertz model. In addition, cell envelope damage of the pathogens was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). D10 values were 0.35 and 0.33 kGy for S. Typhimurium and S. aureus, respectively. During storage at 7 °C, S. Typhimurium and S. aureus had significant (P<0.05) growth only on non-irradiated samples up to about 2.5 and 4 log CFU/leaf at 0.42 and 1.28 log CFU/leaf/day of μmax, respectively. At 25 °C, cell counts of S. Typhimurium and S. aureus on the samples irradiated at 0 and 0.5 kGy increased (P<0.05) up to 3–6 log CFU/leaf. The μmax of both pathogens were higher in 0 kGy (1.08–2.27 log CFU/leaf/day) and 0.5 kGy (0.58–0.92 log CFU/leaf/day), and LPDs ranged from 1.53 to 3.14 day. SEM and TEM observations showed that cells irradiated at 1.5 and 3 kGy showed disrupted cell membrane. These results indicate that gamma irradiation could be a useful decontamination technology to improve food safety of lettuce by destroying cells of S. Typhimurium and S. aureus.  相似文献   

13.
Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.  相似文献   

14.
Application of gamma radiation for decontamination of poultry viscera was examined. Exposure to a dose of 20 kGy rendered the viscera sterile (<1 CFU/10 g tissue), while 5 and 10 kGy reduced the total bacterial count by 4 and 6 log10 cycles, respectively, eliminating the coliforms to <1 CFU/g of tissue. Analysis of organoleptic and biochemical parameters [proximate composition, total volatile basic nitrogen (TVBN), lipid peroxidation (TBARS value), and levels of TCA soluble peptides and proteolytic enzyme] showed that gamma irradiation (20 kGy) followed by storage at 4 °C for 62 days induced no significant change (except lipid peroxidation) in the acceptability of poultry viscera. However, storage at ambient temperature (26 °C) produced enhanced levels of TVBN and TCA soluble products accompanied by higher drip loss. Activities of proteolytic enzymes, except acid protease, did not show any significant change during post-irradiation storage at either temperature.  相似文献   

15.
Cyanidin-3-O-xylosylrutinoside (cya-3-O-xylrut), a major pigment in Schizandra chinensis Baillon, was effectively removed by gamma irradiation of greater than 2 kGy, whereas quercetin, the most abundant of the flavonoids and has anti-inflammatory and anti-allergic effects, could be generated by degradation of cya-3-O-xylrut. In the present study, we investigated the effect of combination treatment of gamma irradiation and hydrogen peroxide (H2O2) on the formation of quercetin through the degradation of cya-3-O-xylrut. Cya-3-O-xylrut was significantly degraded (~93%) by gamma irradiation at 2 kGy and it was completely removed by a combination treatment (0.2% H2O2 and 2 kGy gamma ray). The formation of quercetin was significantly appeared at 2 kGy of gamma ray, together with disappearance of cya-3-O-xylrut. The quercetin formation by gamma ray is 3.2 μg/ml and combination treatment is 7.7 μg/ml. Therefore, the combination treatment of H2O2 and gamma ray is more effective to convert cya-3-O-xylrut into quercetin than gamma irradiation only. In conclusion, gamma ray combined with H2O2 would be a promising tool for bio-conversion of organic compounds.  相似文献   

16.
Minced meat beef inoculated with Bacillus cereus spores was treated with four essential oil constituents. The active compounds were sprayed separately onto the meat in order to determine the concentration needed to reduce by 1 log the population of B. cereus spores. Cinnamaldehyde was the best antimicrobial compound selected. It was mixed with ascorbic acid and/or sodium pyrophosphate decahydrate and tested for its efficiency to increase the relative radiation sensitivity (RRS) of B. cereus spores in minced meat packed under air. Results demonstrated that the radiation treatment in presence of the cinnamaldehyde and sodium phosphate decahydrate increased the RRS of B. cereus spores by two fold. The study revealed also that the irradiation of raw beef meat pre-treated with cinnamaldehyde produced an inhibition of the growth of B. cereus count during refrigerated storage. This technology seems to be compatible with industrial meat processing.  相似文献   

17.
Electron beam irradiation was applied to improve the microbial safety of beef jerky during storage. Beef jerky samples were irradiated at doses of 1, 3, 5, and 10 kGy and stored at 20 °C for 60 d. Microbiological data indicated that the populations of total aerobic bacteria significantly decreased with increasing irradiation dosage. In particular, the populations of total aerobic bacteria were significantly decreased by 1.76 log CFU/g at 10 kJ/m2, compared to the control. Color measurements showed reduced Hunter L and a values of beef jerky for all the treatments during storage, and the Hunter L, a, and b values of beef jerky were not significantly different among the treatments. Sensory evaluation results also showed that electron beam irradiation did not affect sensory scores in overall during storage. Therefore, the results suggest that electron beam irradiation could be useful in improving the microbial safety without impairing the quality of beef jerky during storage.  相似文献   

18.
In Thailand, white scar oyster (Crassostrea belcheri) was ranked for premium quality, being most expensive and of high demand. This oyster is often eaten raw, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. As limited alternative methods are available to sterilize the oyster while preserving the raw characteristic, irradiation may be considered as an effective method for decontamination. In this study, the radiation resistance of pathogenic bacteria commonly contaminating the oyster and the optimum irradiation doses for sterilization of the most radiation resistant bacteria were investigated. The radiation decimal reduction doses (D10) of Salmonella Weltevreden DMST 33380, Vibrio parahaemolyticus ATCC 17802 and Vibrio vulnificus DMST 5852 were determined in broth culture and inoculated oyster homogenate. The D10 values of S. Weltevreden, V. parahaemolyticus and V. vulnificus in broth culture were 0.154, 0.132 and 0.059 kGy, while those of inoculated oyster homogenate were 0.330, 0.159 and 0.140 kGy, respectively. It was found that among the pathogens tested, S. Weltevreden was proved to be the most resistant species. An irradiation dose of 1.5 kGy reduced the counts of 105 CFU/g S. Weltevreden inoculated in oyster meat to an undetectable level. The present study indicated that a low-dose irradiation can improve the microbial quality of oyster and further reduce the risks from the food-borne pathogens without adversely affecting the sensory attributes.  相似文献   

19.
The radiosensitivities of Escherichia coli and Staphylococcus aureus on poached chicken meal (PCM) and minced chicken substrate (MCS) were determined. Effect of irradiation (0, 1, 2 kGy) on total viable cells (TVC) of PCM components was determined under chilled (3–5 °C) storage (0, 9, 14, 21 days) and challenge testing of the bacterial isolates with irradiation (0, 2, 3 kGy) was also conducted on PCM under chilled storage (0,7, 14, 21, 28 days). Additionally, sensory evaluation of the PCM components was assessed with irradiation (0, 2, 3 kGy) during chilled storage (0, 7, 14, 21 days). D10 of E. coli on PCM and MCS were 0.18 and 0.25 kGy whiles those of S. aureus were 0.27 and 0.29 kGy, respectively. D10 values for PCM<MCS and values for S. aureus>E. coli. 2 kGy controlled TVC and extended the shelf life of meals to ⩾14 days but 3 kGy was required to eliminate E. coli and S. aureus. Sensory qualities of the meal were not affected by an irradiation dose of 3 kGy.  相似文献   

20.
Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold (CT) increased 1–1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared CT values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3–3.3-fold underestimation of bacterial counts with respect to irradiation dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号