首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A TiO2 thin buffer layer was introduced between the (Pb0.4Sr0.6)TiO3 (PST) film and the Pt/Ti/SiO2/Si substrate in an attempt to improve their electrical properties. Both TiO2 and PST layers were prepared by a chemical solution deposition method. It was found that the TiO2 buffer layer increased the (100)/(001) preferred orientation of PST and decreased the surface roughness of the films, leading to an enhancement in electrical properties including an increase in dielectric constant and in its tunability by DC voltage, as well as a decrease in dielectric loss and leakage current density. At an optimized thickness of the TiO2 buffer layer deposited using 0.02 mol/l TiO2 sol, the 330-nm-thick PST films had a dielectric constant, loss and tunability of 1126, 0.044 and 60.7% at 10 kHz, respectively, while the leakage current density was 1.95 × 10−6 A/cm2 at 100 kV/cm.  相似文献   

2.
A series of high quality Bi3.15Nd0.85TiO3 (BNT) ferroelectric thin films and La0.7Ca0.3MnO3/Bi3.15Nd0.85TiO3 (LCMO/BNT) multiferroic composite thin films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates by chemical solution deposition (CSD) method. The microstructure, surface morphology and leakage mechanisms of BNT and LCMO/BNT composite films were revealed by X-ray diffraction, scanning electron microscopy and semiconductor device analyzer, respectively. Ferroelectric behavior along with a remnant polarization (2Pr) of 20 μC/cm2, saturated magnetization around 56 emu/cm3 and magnetoelectric effect (ME) voltage coefficient αME of 33 mV/cm Oe at 1 kHz for LCMO/BNT composite films were obtained at room temperature, indicating that the coupling effects of electric and magnetic field exist in the fabricated LCMO/BNT multiferroic composite thin films. And our observations provide an effective way to manipulate the conduction behavior and push forward understanding the leakage mechanism in LCMO/BNT composite films.  相似文献   

3.
Fabrication of ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thick films on a Pt/Ti/SiO2/Si substrate using powder-mixing sol-gel spin coating and continuous wave CO2 laser annealing technique to treat the specimens with at a relatively low temperature was investigated in the present work. PZT fine powders were prepared by drying and pyrolysis of sol-gel solutions and calcined at temperatures from 400 to 750°C. After fine powder-containing sol-gel solutions were spin-coated on a substrate and pyrolyzed, CO2 laser annealing was carried out to heat treat the specimens. The results show that laser annealing provides an extremely efficient way to crystallize the materials, but an amorphous phase may also form in the case of overheating. Thicker films absorb laser energy more effectively and therefore melt at shorter periods, implying a significant volume effect. A film with thickness of 1 μm shows cracks and rough surface morphology and it was difficult to obtain acceptable electrical properties, indicating importance of controlling interfacial stress and choosing appropriate size of the mixing powders. On the other hand, a thick film of 5 μm annealed at 100 W/cm2 for 15 s exhibits excellent properties (P r = 36.1 μC/cm2, E c = 19.66 kV/cm). Films of 10 μm form a melting zone at the surface and a non-crystallized bottom layer easily at an energy density of 100 W/cm2, showing poor electrical properties. Besides, porosity and electrical properties of thick films can be controlled using appropriate processing parameters, suggesting that CO2 laser annealing of modified sol-gel films is suitable for fabricating films of low dielectric constants and high crystallinity.  相似文献   

4.
Nickel thin films have been sputtered on standard Si/SiO2 substrates with TiO2 as an adhesive layer. The thermal stability of these substrates was analyzed. SEM images show an increase in grain size with annealing temperature. They were found to be stable till 800°C, beyond which the nickel layer disintegrated. These substrates were used for deposition of BaTiO3 and (Ba,Sr)TiO3 dielectric thin films under a reducing atmosphere. The dielectric thin films were processed with various pyrolysis and annealing temperatures in order to optimize the dielectric properties. Increased pyrolysis temperatures showed an increase in the grain size. Results on these nickelised substrates were finally compared with dielectric films deposited on platinized silicon substrates under identical conditions but crystallized in an oxygen atmosphere.  相似文献   

5.
(La0.7Sr0.3)MnO3 thin films were deposited on SiO2/Si substrates by a metal-organic decomposition (MOD) method, and then Pb(Zr0.52Ti0.48)O3 (PZT) thin films were grown on (La0.7Sr0.3)MnO3-coated SiO2/Si substrates by a sol-gel method. The effects of annealing temperature on the crystalline phases, microstructures and electrical properties of the PZT films were investigated. X-ray diffraction analysis results indicated that the PZT films with a perovskite single phase could be obtained by annealing at 650°C. The dielectric constant and the remnant polarization of the PZT films increased with increasing annealing temperature. The remnant polarization and the coercive field of the films annealed at 650°C were 18.3 μC/cm2 and 35.5 kV/cm, respectively, whereas the dielectric constant and loss value measured at 1 kHz were approximately 1100 and 0.81, respectively.  相似文献   

6.
Highly (111) oriented, phase-pure perovskite Pb(Zr0.3Ti0.7)O3 (or PZT 30/70) thin films were deposited on single-crystal, (0001) wurtzite GaN/sapphire substrates using the sol-gel process and rapid thermal annealing. The phase, crystallinity, and stoichiometry of annealed PZT films were evaluated by X-ray diffraction and Rutherford backscattering spectroscopy. The atomic force microscopy revealed a smooth PZT surface (rms roughness ∼1.5 nm) with striations and undulations possibly influenced by the nature of the underlying GaN surface. The cross-sectional field-emission scanning electron microscopic images indicated a sharper PZT/GaN interface compared to that of sol-gel derived PZT on (111) Pt/TiO2/SiO2/(100) Si substrates. The capacitance-voltage (C-V) characteristics for PZT in the Pt/PZT/GaN (metal-ferroelectric-semiconductor or MFS) configuration were evaluated as a function of annealing temperature and applied voltage. The observed C-V hysteresis stemmed from trapped charge at defect sites within PZT. Also, the lower capacitance density (C/A = 0.35 μF/cm2, where A is the area of an electrode) and remnant polarization (P r ∼ 4 μC/cm2) for PZT in the MFS configuration, compared to the values for PZT in the MFM configuration (Pt/PZT/Pt), were attributed to the high depolarization field within PZT.  相似文献   

7.
TiO2 sol-gel composite films with dropping molybdenumphosphoric acid (PMoA) have been prepared by sol-gel method. The structure and constitute of composite thin films were studied with Fourier transforms infrared spectroscopy (FT-IR) atomic force microscopy (AFM), and X-ray diffraction (XRD) patterns, respectively. The photochromic behavior and mechanism of composite thin films were investigated with ultraviolet-visible spectra (UV-vis) and electron spin resonance (ESR). FT-IR results showed that the Keggin geometry of PMoA was still preserved inside PMoA/TiO2 composite thin films, and a charge transfer bridge was built at the interface of PMoA and TiO2 through the Mo-O-Ti bond. Surface topography of the composite film showed obvious changes before/after adding PMoA, and the surface topography of composite films showed obvious changes before/after irradiating as well. Composite thin film had reversible photochromic properties. Irradiated with UV light, transparent films changed from colorless to blue and they can bleach completely with ambient air in the dark. ESR results showed that TiO2 were excitated by UV light to produce electrons, which deoxidized PMoA to produce heteropolyblues. The photochromic process of PMoA/TiO2 system was carried through electron transfer mechanism.  相似文献   

8.
Tetragonal lead zirconate titanate thin films on platinized silicon wafers have been prepared from chemically different precursor solutions by chemical solution deposition. Literature known routes have been evaluated and an optimized standard process has been developed leading to Pb(Zr0.3,Ti0.7)O3 films with a high degree of (111) orientation which consequently shows square hysteris loops with Pr values of 34 μC/cm2. Other solvents, different alkoxides of the transition metals, and different carboxylates of lead have been systematically introduced in this standard process and their influence on the final morphological and electrical properties has been studied. It has been found that the use of lead (II) propionate and titanium tetra n-butoxide for solution synthesis leads to a decrease of the remanent polarization of ∼50%. Furthermore the reaction atmosphere after spinning and during the pyrolysis has been investigated. Increased ambient humidity after the spin coating process also caused a significant deterioration of the final film properties. The findings have been explained in terms of a hindered formation of the (111) texture promoting intermediate Pt x Pb phase.  相似文献   

9.
Pb(Zr0.25Ti0.75)O3 (PZT25) thin films were prepared on LaNiO3-coated thermally oxidized silicon substrates by chemical solution deposition method, where LaNiO3 electrodes were also prepared by a chemical solution deposition technique. The dielectric constant and dielectric loss of the PZT25 thin films were 570 and 0.057, respectively. The remanent polarization and coercive field were 20.11 μC/cm2 and 60.7 kV/cm, respectively. The PZT25 thin films on LaNiO3-coated thermally oxidized silicon substrates showed improved fatigue characteristics compared with their counterparts on plantium-coated silicon substrates.  相似文献   

10.
Ce-substituted BiFeO3 film (BCFO film) have been prepared by sol–gel process on F doped SnO2 (FTO)/glass substrates. The effects of Ce substitution on the structural and electrical properties have been reported. X-ray diffraction data confirmed the R3c structure with the elimination of all secondary phases. We observed an increase in the remnant polarization (Pr) with Ce substitution and obtained a maximum value of ∼84 μC/cm2 in 5% Ce-substituted film. The dielectric constant of the films was increased from 280 to about 420 for the BiFeO3 film and 5% Ce-substituted BCFO film, respectively and the films showed excellent dielectric loss behavior. Moreover, the leakage current was substantially reduced by the Ce substitution.  相似文献   

11.
Randomly oriented ferroelectric BaTiO3 and (Ba0.6Sr0.4) TiO3 thin films on platinum coated Si (100) were prepared by a sol-gel method. The precursor solutions were derived from barium hydroxide or a mixture of barium/strontium hydroxides dissolved in acetic acid and titanium butoxide. Polarization versus applied voltage hysteresis studies indicated a remanent polarization of 3 µC/cm2 and a coercive field of 43.4 kV/cm for BaTiO3 films annealed at 800°C for 1 h. Corresponding parameters for (Ba0.6Sr0.4)TiO3 films annealed at 800°C were found to be 7.2 µC/cm2 and 102.7 kV/cm, respectively. Microstructural study of the surface morphology of these films indicated grains of less than 0.1 µm in size. The leakage current for (Ba0.6Sr0.4)TiO3 films was found to be two orders of magnitude lower than that for BaTiO3 films.  相似文献   

12.
Ferroelectric Ba(Sn0.05Ti0.95)O3 (BTS) thin films were deposited onto Pt/Ti/SiO2/Si substrates by sol–gel technique with a 100 nm thick LSCO buffer layer. The influence of buffer layer on the phase and microstructure of the thin films was examined. Dielectric properties of the thin films were investigated as a function of frequency and direct current (DC) electric field. The results show that the LSCO buffer layer had a marked effect on the dielectric properties of the BTS films. The BTS thin films with LSCO buffer layer had enhanced dielectric properties.  相似文献   

13.
Rare earth element (i.e.) europium co-doped aluminum zinc oxide (Eu:AZO) thin films were deposited on microscope glass slides by nebulizer spray pyrolysis with different Eu-doping concentrations (0, 0.5, 1, and 1.5%). The deposited films were investigated using X-ray diffraction, AFM, EDAX, FT-Raman, UV–visible, PL, and Hall effect measurements. X-ray confirmed the incorporation of aluminum and europium ions into the ZnO structure. All films have polycrystalline nature with hexagonal wurtzite structure at (002) direction. Topological depictions exhibited minimum surface roughness and low film thickness for pristine AZO thin film. EDAX study authorizes the existence of Zn, O, Al, and Eu in Eu: AZO thin films. Raman spectra exhibited the characteristic of ZnO-wurtzite structure (E2-high) mode at 447?cm?1. The deposited film showed high optical transmittance of ~90% in visible region, and the direct energy gap was around 3.30?eV for pristine AZO thin film. The PL spectra emitted a powerful UV emission situated at 388?nm, and it indicates that the film has good optical quality. The obtained large carrier concentration and less resistivity values are 4.42?×?1021?cm?3 and 3.95?×?10?4?Ω?cm, respectively, for 1.5% Eu-doped AZO thin film. The calculated figure of merit value is 17.29?×?10?3 (Ω/sq)?1, which is more suitable for the optoelectronic device.  相似文献   

14.
Ba(Zr,Ti)O3/LaNiO3 layered thin films have been synthesized by chemical solution deposition (CSD) using metal-organic precursor solutions. Ba(Zr,Ti)O3 thin films with smooth surface morphology and excellent dielectric properties were prepared on Pt/TiO x /SiO2/Si substrates by controlling the Zr/Ti ratios in Ba(Zr,Ti)O3. Chemically derived LaNiO3 thin films crystallized into the perovskite single phase and their conductivity was sufficiently high as a thin-film electrode. Ba(Zr,Ti)O3/LaNiO3 layered thin films of single phase perovskite were fabricated on SiO2/Si and fused silica substrates. The dielectric constant of a Ba(Zr0.2Ti0.8)O3 thin film prepared at 700°C on a LaNiO3/fused silica substrate was found to be approximately 830 with a dielectric loss of 5% at 1 kHz and room temperature. Although the Ba(Zr0.2Ti0.8)O3 thin film on the LaNiO3/fused silica substrate showed a smaller dielectric constant than the Ba(Zr0.2Ti0.8)O3 thin film on Pt/TiO x /SiO2/Si, small temperature dependence of dielectric constant was achieved over a wide temperature range. Furthermore, the fabrication of the Ba(Zr,Ti)O3/LaNiO3 films in alternate thin layers similar to a multilayer capacitor structure was performed by the same solution deposition process.  相似文献   

15.
The physical and electrochemical properties of sol-gel synthesized nickel-doped tin oxide (NTO) thin films were investigated. The X-ray diffraction results showed that NTO samples exhibited a tetragonal structure. The average crystallite size and the unit cell volume of the films were reduced by Ni increment, while the stacking fault probability was increased. Furthermore, the field-emission scanning electron microscopy images clearly displayed that the worm-like surface morphology of the SnO2 thin films was altered to the spherical feature in 3 and 10 mol% NTO samples. Moreover, by virtue of Ni incorporation, the average transparency of the SnO2 thin films rose up from 67 to 85% in the visible region; also, the optical band gap of the SnO2 sample (3.97 eV) increased and the thin film with 3 mol% dopant concentration showed a maximum value of 4.22 eV. The blue/green emission intensities of photoluminescence spectra of SnO2 thin film changed via Ni doping. The Hall effect measurements revealed that by Ni addition, the electrical conductivity of tin oxide thin films altered from n- to p-type and the carrier concentration of the films decreased due to the role of Ni2+ ions which act as electron acceptors in NTO films. In contrast, 20 mol% Ni-doped sample had the highest mobility about 9.65 cm2 (V s)?1. In addition, the cyclic voltammogram of NTO thin films in KOH electrolyte indicated the charge storage capacity and the surface total charge density of SnO2 thin films enhanced via Ni doping. Moreover, the diffusion constant of the samples increased from 2?×?10?15 to 6.5?×?10?15 cm2 s?1 for undoped and 5 mol% dopant concentration. The electrochemical impedance spectroscopy of the NTO thin films in two different potentials showed the different electrochemical behaviors of n- and p-type thin films. It revealed that the 20 mol% NTO thin film had maximum charge transfer at lower applied potential.  相似文献   

16.
Thick aluminum oxide films are prepared on Al plates by anodizing. On the ceramic surface thus obtained a very thin Ag film is deposited via vacuum thermal evaporation. The Ag/Al2O3/Al samples prepared are irradiated by Nd:YAG laser through a suitable metal mask in order to remove the top metal film in the exposed areas. Thus, a negative silver image of the copied mask is obtained. Further, the samples are processed in Ni electroless chemical bath activated by the rest of silver. All processing steps are studied by scanning electron microscopy (SEM). EDS X-ray mapping is applied to study the final distribution of Al and Ni in the processed areas. In addition, the DC conductivity of the fabricated Ni wires obtained is measured. The proposed new method for selective chemical deposition of electroconductive Ni onto laser microstructured Ag/Al2O3/Al samples is simple, versatile and not restricted to the metal/ceramic system studied as well as to the electroless deposited metal.  相似文献   

17.
Bi-layered ferroelectric Bi3TiTaO9 (BTT) thin films with different thickness (ranging from 100 to 400 nm) were successfully fabricated on Pt(111)/TiO2/SiO2/(100)Si substrates using chemical solution deposition (CSD) technique at different annealing temperatures. The c-axis orientation of the films was affected by film thickness and process temperature. The thinner the film and the higher the process temperature, the higher the c-axis orientation. With the increase of film thickness, the stress decreased but the film roughness increased, which led to the decrease of c-axis orientation of films. BTT films annealed at 800°C were found to have much improved remament polarization (P r ) than that of films annealed at 650 and 750°C. The P r and coercive field (E c ) values were measured to be 2 μC/cm2 and 100 kV/cm, respectively. BTT films showed well-defined ferroelectric properties with grain size larger than 100 nm.  相似文献   

18.
Iron cobalt nickel nitride (FeCoNiN) thin films are prepared by sol-gel spin coating route. The structural, magnetic and surface properties of the thin films are evaluated. The crystalline nature of thin films was enhanced upon annealing, leading to increased crystallite size. The X-ray diffraction shows mixed phases with crystallite size in the range of 20–26.93 nm. Thin films show ferromagnetism at room temperature. Coercivity and saturation magnetization are in the range of 642–716 Oe and 2.5–7.5 emu/cm3 respectively. Both coercivity and saturation magnetization increased with annealing of thin films. Magnetic properties are related to the crystallinity of thin films. The increase in crystallite size results into an increase of magnetic properties. Rectangular shaped particles are seen on the surface of thin films. The same type of grains can be seen on the surface of thin films which confirmed the formation of FeCoNiN as predicted by XRD. These novel thin films might be used in memory devices and optoelectronic applications.  相似文献   

19.
The metal-ferroelectric-semiconductor (MFS) heterostructure has been fabricated using Bi3.25La0.75Ti3O12 (BLT) as a ferroelectric layer by sol-gel processing. The effect of annealing temperature on phase formation and electrical characteristics of Ag/BLT/p-Si heterostructure were investigated. The BLT thin films annealed at from 500°C to 650°C are polycrystalline, with no pyrochlore or other second phases. The C-V curves of Ag/BLT/p-Si heterostructure annealed at 600°C show a clockwise C-V ferroelectric hysteresis loops and obtain good electrical properties with low current density of below 2×10−8 A/cm2 within ±4 V, a memory window of over 0.7 V for a thickness of 400 nm BLT films. The memory window enlarges and the current density reduces with the increase of annealing temperature, but a annealing temperature over 600°C is disadvantageous for good electrical properties.  相似文献   

20.
Yttrium iron garnets (Y3Fe5O12, YIG) nanoparticles thin films with different pH values (pH 1, 2, 3, 4 and 5) were prepared by a sol–gel method. The films were deposited on quartz substrates using a spin coating technique. Annealing of the films was performed at 900 °C in air for 2 h. The structural analysis using an X-ray diffractometer (XRD) exhibited that all films were single phases regardless the differences in pH value. The lattice parameters calculated from the XRD patterns revealed that the distortion of lattice occurred at a high pH value. The crystallites sizes of films also increased from 27.6 to 33.3 nm when the pH value increases from 1 to 5. The films were high agglomeration due to increasing of pH value which caused difficulty to measure the grain size. The films with different pH values showed transmission >80 % in visible range. Additionally, the absorption coefficient (α) of films was found to be of the order of 107 cm?1. A strong absorption of the films caused by charge transfer transition centered in UV and optical transitions between crystal field levels within the 3d levels of Fe3+ ions. The YIG films exhibit highest saturation magnetization value of 76 emu/cm3 at pH 1. The increment of pH value up to 5 caused a decreasing of coercive field due to multidomain formation and the easy movement of the domain walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号