首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative fluorine-atomic concentrations and the abundance of CFx functionalities from CF4- and C6F6-RF-plasma treated polypropylene (PP) film surfaces were evaluated. Survey and high resolution (HR) ESCA data indicate that intense surface fluorination can be carried out, from both fluorine precursors, under relatively low power and treatment time conditions. However, it was found that the stability (under open laboratory conditions and under various solvent and temperature environments) of plasma implanted fluorine based groups significantly depend on the nature of plasma gases involved. Simulation of plasma induced molecular fragmentation, at different electron energy MS conditions, indicates the presence of a much higher fluorine atom concentration from a CF4-plasma in comparison to a C6F6-plasma. It is suggested that fluorine atom mediated fragmentation of macromolecular backbones is probably responsible for the erosion of plasma fluorinated surfaces, rather than thermal motion induced burying processes.  相似文献   

2.
The optical emission from tetrafluoromethane plasma (2% argon included) has been studied by emission spectroscopy. The evolution ofCF *,CF 2 * , andF emissions has been followed during the treatment of an organic surface. An-alkane, hexatriacontane, has been used as a model for high density polyethylene surface and treated in different plasma conditions. We found that the evolution of fluorinated species emissions in the plasma gas phase is not only a measurement of the reactive species concentrations, but also an indication of the surface modifications. The surface properties, such as surface energy and surface roughness are correlated to the emission intensity of reactives species in the plasma gas phase. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions.  相似文献   

3.
4.
The depth of surface modification by low-temperature cascade arc torch is investigated. A stack of 10 sheets of nonwoven fabrics of polyester fibers is exposed to a low-temperature cascade arc torch containing CF4 or C2F4, and the fluorination effect is examined by ESCA. It is shown that interaction of chemically reactive species, created in a low-temperature cascade arc torch, with the surface is not limited to the surface contacted by the torch (flame). The results indicate that the fluorination effect is observed on surfaces which are shadowed from the torch by overlying fibers. The highest degree of fluorination is found on the second layer, rather than on the first layer which the torch contacts directly. No significant differences in the trends of penetration of CF4 and C2F4 treatment through porous samples are observed. However, ESCA data show principal differences in chemical structures of the surfaces treated with CF4 (nonpolymer-forming gas) and C2F4 (polymer-forming gas). These results indicate that chemically reactive species induced by the excited species of argon rather than primary species created by the ionization process seem to play predominant roles in the surface treatment as well as the low-temperature cascade arc torch polymerization of perfluorinated compounds. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Due to their extreme reactivity, fluorine and fluorinated gases may be used to modify the surface properties of numerous materials. In the following, the surface fluorination of some carbon-based compounds (graphite, graphitised carbon fibres, carbon blacks and elastomers) using CF4 rf plasma technique and direct F2-gas fluorination is proposed. From XPS studies, the different types of CF bonding obtained in the materials after treatment have been correlated either to the physico-chemical characteristics of the pristine material or to the experimental parameters of the fluorination. Reaction mechanisms are proposed.  相似文献   

6.
Several new synthesis methods of fluorinated carbon nanofibres, such as controlled fluorination using fluorinating agent (TbF4 or XeF2), or assisted fluorination under UV and gamma irradiation, are reviewed and compared with the direct fluorination using undiluted fluorine gas. The results highlight the different fluorination mechanisms for the direct fluorination and the new methods. The other advantage of those alternative fluorination routes is the possibility to provide fine tuning of the fluorination level, i.e. from F/C atomic ratio close to zero, as a functionalization, to the unity (CF1) according to the required application, electrochemical or tribological. Two applications are described in this paper as a function of the fluorine content: protection against ozonation and use as solid lubricants.  相似文献   

7.
In the present work, the activated carbon (AC) support was treated with HCl, HNO3 and HF solution. The order of catalyst dispersion was as follows: Rb-K/AC-HNO3 > Rb-K/AC-HF > Rb-K/AC-HCl > Rb-K/AC. The same sequence was also observed for the amount of the acid surface oxygen groups on AC, but not for the basicity of the catalyst. The key role of acid treatment on AC surface chemistry and the basic sites, which are closely related to catalyst dispersion and basicity, is examined to rationalize these findings. On the other hand, a consideration of the reaction mechanism suggests that the reaction proceeds via CF2 carbenes formed on the catalyst surface as intermediates, followed by carbine disproportionation to CF3 radicals and CF3CF2 radicals, followed by reaction with I2 to produce CF3CF2I, and it was also found that the Rb-K/AC-HCl catalyst with a high dispersion and moderate basicity was helpful for the enhancement of catalytic activity for C2F5I synthesis.  相似文献   

8.
This paper investigates the synthetic mechanism of trifluoroiodomethane (CF3I) in the reaction of trifluoromethane and iodine via vapor-phase catalytic reaction. It is suggested that CF2 carbene is the key intermediate and is formed in the pyrolysis process of CHF3 at high temperature. However, in pyrolysis of CHF3 under activated charcoal (AC) existing conditions, no C2F4 was detected. H2 and 2-methyl-2-butene could not trap the CF2 carbene. When treating the remained compounds on the used AC with H2, CH4 is formed on the process. It is proposed that CF2 carbene combines with AC strongly and transfers into CF3 radical on heat. In addition, it is found that the AC is not only the catalyst supporter to form CF3I, but also a co-catalyst to promote the formation of CF2 carbene and CF3 radical.  相似文献   

9.
An overview of the main procedures for the preparation of fluorides with very high surface areas is given. Three processes are outlined: (i) plasma fluorination, (ii) sol–gel route and (iii) oxidative decomposition of inorganic precursors. From all three processes nanostructured metal fluorides with 100–400 m2 g−1 can be obtained. Prevention of the local overheating during fluorination seems to be the key factor to obtain the high surface area fluorides. TEM investigations of AlF3 and CrF3 obtained by oxidative decomposition revealed considerable differences in their morphologies and crystallinity. CrF3 is completely amorphous and unstable under beam. AlF3 contains an amorphous phase and nanocrystalline phases of α-AlF3 and β-AlF3. Nanocrystals are uniformly distributed within the amorphous phase. Also present are the rod-like nanostructures that consist of β-AlF3 and are 5–10 nm wide.  相似文献   

10.
Recent results on the surface modification of petroleum cokes and their electrochemical properties as anodes of secondary lithium batteries are summarized. The surface of petroleum coke and those heat-treated at 1860-2800 °C were fluorinated by elemental fluorine (F2), chlorine trifluoride (ClF3) and nitrogen trifluoride (NF3). No surface fluorine was found except only one sample when ClF3 and NF3 were used as fluorinating agents while surface region of petroleum coke was fluorinated when F2 was used. Transmission electron microscopic (TEM) observation revealed that closed edge of graphitized petroleum coke was destroyed and opened by surface fluorination. Raman spectra showed that surface fluorination increased the surface disorder of petroleum cokes. Main effect of surface fluorination with F2 is the increase in the first coulombic efficiencies of petroleum cokes graphitized at 2300-2800 °C by 12.1-18.2% at 60 mA/g and by 13.3-25.8% at 150 mA/g in 1 mol/dm3 LiClO4-ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1, v/v). On the other hand, main effect of the fluorination with ClF3 and NF3 is the increase in the first discharge capacities of graphitized petroleum cokes by ∼63 mAh/g (∼29.5%) at 150 mA/g in 1 mol/dm3 LiClO4-EC/DEC.  相似文献   

11.
Durand  E.  Labrugère  C.  Tressaud  A.  Renaud  M. 《Plasmas and Polymers》2002,7(4):311-325
Because of their exceptional reactivity, fluorine and fluorinated gases are of primary importance for the modification of the surface properties of materials. This study is devoted to surface treatment of thin nitrile gloves, made of carboxylated nitrile butadiene rubber latex, using either direct fluorination (10% F2gas diluted in N2) or plasma-enhanced fluorination in radio-frequency cold plasmas using fluorinated gases (CF4, CHF3). Mechanisms of fluorination of these co-elastomers have been proposed on the basis of the assignment of the different components of the XPS spectra. Several mechanisms have been observed depending on the fluorination conditions. Although the modification of nitrile gloves is already effective for fluorination reactions at room temperature, an important activation is observed for experiments carried out at 90°C. When the treatments are carried out at room temperature, a gradual fluorination occurs: in the case of 10% diluted F2 gas, monofluorinated C—F groups are the species most found at the surface and perfluoro groups CF n are present in lower amount. An addition reaction takes place at the CH=CH double bonds of the polybutadiene entities, leading to CHF=CHF units. Whatever the fluorination method, thermal activation yields a more massive fluorination of the surface that finally leads to perfluorinated CF2 groups and terminal —CF3 groups.  相似文献   

12.
Chemical–physical properties of ultra‐high‐molecular weight polyethylene (UHMWPE) treated by direct fluorination, direct fluorination accompanied with UV irradiation, by XeF2 and by TbF4, were tested by FTIR spectroscopy, visible spectroscopy, 19F and 13C NMR, scanning electron microscopy, XRD, and EPR. Surface energy measurements were carried out. The direct fluorination of UHMWPE is a diffusion‐controlled process, but treatment with XeF2 is a kinetically controlled one. Direct fluorination and direct fluorination accompanied with UV irradiation results mainly in a formation of ? CF2? groups. On the contrary, ? CHF? groups are prevailing in UHMWPE treated with XeF2 and TbF4. Surface texture of UHMWPE treated with XeF2 and with F2 is quite different. Direct fluorination results in a higher polarity of the polymer surface when compared with treatment with XeF2. For the case of direct fluorination, both long‐lived peroxy and fluoroalkylradicals are formed. For the case of treatment with XeF2, only fluoroalkylradicals were detected. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 49:3559–3573, 2011  相似文献   

13.
Direct fluorination of the hexafluoroacetone-ethylene copolymer, [CH2CH2OC(CF3)2]n, under conditions designed to promote fragmentation of the polymer chain has led to the synthesis of a number of structurally unusual branched perfluoropolyethers [? CF2? CF2? O-C(CF3)2? ]n. These new perfluoropolyethers have been characterized by 19F-NMR, and their physical properties are reported. Direct fluorination under milder conditions yields a high-molecular-weight perfluoropolyether.  相似文献   

14.
We have analyzed decay kinetics of CF2 radicals in the afterglow of low-pressure, high-density C4F8 plasmas. The decay curve of CF2 density has been approximated by the combination of first- and second-order kinetics. The surface loss probability evaluated from the frequency of the first-order decay process has been on the order of 10–4. This small surface loss probability has enabled us to observe the second-order decay process. The mechanism of the second-order decay is self-association reaction between CF2 radicals (CF2+CF2C2F4). The rate coefficient for this reaction has been evaluated as (2.6–5.3)×10–14 cm3/s under gas pressures of 2 to 100 mTorr. The rate coefficient was found to be almost independent of the gas pressure and has been in close agreement with known values, which are determined in high gas pressures above 1 Torr.  相似文献   

15.
The pretreatment of corn stover with H2SO4 and H3PO4 was investigated. Pretreatments were carried out from 30 to 120 min in a batch reactor at 121°C, with acid concentrations ranging from 0 to 2% (w/v) at a solid concentration of 5% (w/v). Pretreated corn stover was washed with distilled water until the filtrate was adjusted to pH 7.0, followed by surfactant swelling of the cellulosic fraction in a 0–10% (w/v) solution of Tween-80 at room temperature for 12 h. The dilute acid treatment proved to be a very effective method in terms of hemicellulose recovery and cellulose digetibility. Hemicellulose recovery was 62–90%, and enzymatic digestibility of the cellulose that remained in the solid was >80% with 2% (w/v) acid. In all cases studied, the performance of H2SO4 pretreatment (hemicellulose recovery and cellulose digestibility) was significantly better than obtained with H3PO4. Enzymatic hydrolysis was more effective using surfactant than without it, producing 10–20% more sugar. Furthermore, digestibility was investigated as a function of hemicellulose removal. It was found that digestibility was more directly related to hemicellulose removal than to delignification.  相似文献   

16.
The depth and possible mechanisms of the penetration of surface modification into porous media by a low temperature cascade are torch are investigated. Two different modes of such penetration (“flow controlled” and “diffusion controlled”) are evaluated. Three porous samples [stacks of 10 sheets of nonwoven fabrics of poly(ethylene terephthalate)each], placed at an axial distance of 24, 28, and 32 cm from the cascade are anode, are exposed to a low temperature cascade arc torch containing argon and CF4 or C2F4, and surface properties of each of the sheets within treated porous samples are examined by ESCA. It is shown that interaction of chemically reactive species, created in the low temperature cascade arc torch, with the surface is not limited to the surface directly contacted by the torch. The flow controlled penetration is more pronounced for the outer layers, while diffusion controlled penetration is within the inner layers of the porous structure. Substantial differences in the fluorination effect of CF4 (nonpolymer forming gas) and C2F4 (polymer forming gas) discharges for the second and third stacks are observed, that can be explained by the fact that the major effect of the CF4 cascade arc torch treatment is based on the reaction of reactive species with the surface polymer molecules. The effect of C2F4 cascade arc torch treatment is based on the reactions of reactive species with polymers as well as reactions of reactive species themselves at the surface (plasma polymerization). Reactivity of the species created in C2F4 discharge is much higher compared to that created in CF4 discharge, which is one of the major factors influencing penetration trends of low temperature cascade arc treatment into porous media. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Reaction rate coefficients have been measured at 295 K for both CF3 and CF2 with atomic and molecular fluorine. The reaction between CF3 and F was studied over a gas number density range of (2.4–23)×1016 cm–3 with helium as the bath gas. The measured rate coefficient increased from (1.1–1.7)×10–11 cm3 s–1 as the gas number density increased over this range. In contrast to this relatively small change in rate coefficient with gas number density, the rate coefficient for CF2+F increased from (0.4–2.3)×10–12 cm3 s–1 as the helium gas number density increased from (3.4–28.4)×1016 cm–3. Even for the highest bath gas number density employed, the rate coefficient was still more than an order of magnitude lower than earlier measurements of this coefficient performed at comparable gas number densities.Both these association reactions are examined from the standpoint of the Gorin model for association of radicals and use is made of unimolecular dissociation theory to examine the expected dependence on gas number density. The calculations reveal that CF3+F can be explained satisfactorily in these terms but CF2+F is not well described by the simple Gorin model for association.CF3 was found to react with molecular fluorine with a rate coefficient of (7±2)×10–14 cm3 s–1 whereas only an upper limit of 2×10–15 cm3 s–1 could be placed on the rate coefficient for the reaction between CF2 and F2. The values obtained for this set of reactions mean that the reaction between CF3 and F will play an important role in plasmas containing CF4. The high rate coefficient will mean that, under certain conditions, this particular reaction will control the amount of CF4 consumed. On the other hand, the much lower rate coefficient for reactions between CF2 and F means that CF2 will attain much higher concentrations than CF3 in plasmas where these combination reactions are dominant.  相似文献   

18.
Halogenated sp2 materials are of high interest owing to their important electronic and electrochemical properties. Although methods for graphite and graphene fluorination have been extensively researched, the fundamental electrochemical properties of fluorinated graphite are not well established. In this paper, the electrochemistry of three fluorographite materials of different carbon‐to‐fluorine ratio were studied: (CF0.33)n, (CF0.47)n, and (CF0.75)n. Our findings reveal that the carbon‐to‐fluorine ratio of fluorographite will impact the electrochemical performance. Faster heterogeneous electron‐transfer (HET) rates and lowered oxidation potentials for ascorbic acid and uric acid are progressively obtained with increasing fluorine content. The fluorographite (CF0.75)n was in fact found to exhibit the most improved electrochemical performances with the fastest HET rates and significantly lowered overpotentials in the oxidation of ascorbic acid. Analytical parameters such as sensitivity and linearity were subsequently investigated by applying the fluorographite (CF0.75)n in the analysis of ascorbic acid and uric acid, which can be simultaneously detected. We determined good linear responses towards the detection of both ascorbic and uric acid. Fluorographites outperform graphites in sensing applications, which will have a profound impact on applications of fluorographites and fluorographene in sensing and biosensing.  相似文献   

19.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

20.
Weakly ionised gaseous plasma created in a moist tetrafluoromethane gas at a low pressure with an electrodeless radiofrequency discharge was applied to modify the surface properties of cellulose fibres. The plasma was used to increase the adsorption of zinc oxide (ZnO) nanoparticles such that cellulose fibres with good ultraviolet (UV) protective properties could be created. The UV protection factor (UPF) values of the ZnO-functionalised fibres were determined as a function of the plasma treatment time. The chemical and physical surface properties of the plasma-treated fibres were examined using scanning electron microscopy, X-ray photoelectron spectroscopy, and wettability tests. The quantity of zinc on the fibres was determined using inductively coupled plasma mass spectroscopy. The results indicated that 30 s of plasma treatment resulted in ZnO-functionalised samples with lower UPF values than samples without plasma treatment due to the creation of fluorine-rich functional groups on cellulose fibres and the agglomeration of ZnO nanoparticles. The highest UPF values (50+) were obtained when samples were treated with plasma for 10 s. These high UPF values were a result of the increased adsorption of uniformly distributed ZnO nanoparticles caused by fibres surface functionalization and roughening upon plasma treatment. Furthermore, the mechanical properties of textiles treated with moist CF4 plasma for 10 s were slightly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号