首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the orbital and spin dynamics of charge carriers induced by non-overlapping linearly polarized light pulses in semiconductor quantum wells. It is shown that such an optical excitation with coherent pulses leads to a spin orientation of photocarriers and an electric current. The effects are caused by the interference of optical transitions driven by individual pulses. The distribution of carriers in the spin and momentum spaces depends on the crystallographic orientation of quantum wells and can be efficiently controlled by the pulse polarizations, time delay and phase shift between the pulses, as well as an external magnetic field.  相似文献   

2.
The absorption of linearly polarized light in low-dimensional semiconductor structures is investigated. It is shown that the absorption under consideration can give rise to spin orientation of free carriers. A theory of this optical orientation by linearly polarized light is developed for resonant intersubband optical transitions in n-type quantum wells. It is demonstrated that, in the vicinity of the resonance, the optical orientation undergoes spectral inversion, namely, the electron spin orientation reverses sign with increasing frequency. This behavior can be accounted for by the spin-orbit subband splitting, which is linear in the wave vector, and by the energy and quasi-momentum conservation laws.  相似文献   

3.
It is shown that intraband absorption of circularly polarized light leads to spin polarization of the electron gas. A theory of this monopolar optical spin orientation is developed for indirect intraband transitions in bulk semiconductors and for indirect intrasubband and direct intersubband transitions in quantum wells.  相似文献   

4.
Optical absorption of circularly polarized light is well known to yield an electron spin polarization in direct band gap semiconductors. We demonstrate that electron spins can even be generated with high efficiency by absorption of linearly polarized light in InxGa(1-x)As. By changing the incident linear polarization direction we can selectively excite spins in both polar and transverse directions. These directions can be identified by the phase during spin precession using time-resolved Faraday rotation. We show that the spin orientations do not depend on the crystal axes suggesting an extrinsic excitation mechanism.  相似文献   

5.
We discuss optical absorption in topological insulators and study possible photoelectric effects theoretically. We found that absorption of circularly polarized electromagnetic waves in two-dimensional topological insulators results in electric current in the conducting 1D edge channels, the direction of the current being determined by the light polarization. We suggest two ways of inducing such a current: due to magnetic dipole electron transitions stimulated by irradiation of frequency below the bulk energy gap, and due to electric dipole transitions in the bulk at frequencies larger than the energy gap with subsequent capture of the photogenerated carriers on conducting edge states.  相似文献   

6.
Optical orientation of electrons was used to polarize the crystal lattice nuclei in quantum-size heterostructures and to study the effect of the conduction band spin splitting on the spin states of quasi-two-dimensional (2D) electrons drifting in an external electric field. High (~1%) nuclear polarization was registered using polarized luminescence and ODNMR in single GaAs/AlGaAs quantum wells. Measurement was made of the hyperfine interaction fields created by polarized nuclei on electrons and by electrons on nuclei. The spin-lattice relaxation of nuclei on the non-degenerate 2D electron gas was calculated. A comparison of the theoretical and experimental longitudinal relaxation times permitted the conclusion that the localized charge carriers are responsible for nuclear polarization in quantum wells in the temperature range of 2–77 K. A new effect has been studied, i.e. induction of an effective magnetic field acting on 2D electron spins when electrons drift in an external electric field in the quantum well plane. This effective field Beff is due to the spin splitting of the conduction band of 2D electrons. The paper discusses possible registration of an ODNMR signal when the field Beff is modulated by an electric current during optical orientation.  相似文献   

7.
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0相似文献   

8.
A quantum dot spin light emitting diode provides a test of carrier spin injection into a qubit and a means for analyzing carrier spin injection and local spin polarization. Even with 100% spin-polarized carriers the emitted light may be only partially circularly polarized due to the geometry of the dot. We have calculated carrier polarization-dependent optical matrix elements for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. Calculations for typical SAQD geometries with emission along [110] show light that is only 5% circularly polarized for spin states that are 100% polarized along [110]. Measuring along the growth direction gives near unity conversion of spin to photon polarization and is the least sensitive to uncertainties in SAQD geometry.  相似文献   

9.
We have studied theoretically the influence of symmetry breaking mechanisms: structural inversion asymmetry, bulk inversion asymmetry, relativistic and non-relativistic interface Hamiltonian and warping on spin split of levels ΔE and optical absorption of linearly polarized light in asymmetrical quantum wells made from zincblende materials grown on [001] direction. The AlSb/InAs/GaSb/AlSb broken-gap quantum wells with hybridized electron-hole states sandwiched by the AlSb barriers have been considered. We have obtained substantial contributions of these effects into the absolute values of spin split of electron and hole states and spinflip optical transitions for the initial state in-plane wave vectors along low symmetry directions such as [12].  相似文献   

10.
In an interferometric pump-probe experiment, we demonstrate the phase tuning of the spin polarization of photoelectrons emitted in a three-photon process from Cu(001). A phase shift of pi between delayed ultrafast circularly polarized light pulses can switch the spin polarization from +/-20% to -/+40%. In the delay regime of overlapping pulses, we show the dominating role of optical interference effects in determining the spin polarization. For longer delays, we detect the influence of the coherent material response, manifested in both the final state electron population as well as the final state spin polarization.  相似文献   

11.
The optical absorption properties of bilayer zigzag-edge graphene nanoribbons (BL-ZGNRs) with external transverse electric fields are investigated by taking into account the Coulomb interaction effect in the Hartree-Fock approximation. We study the phase transitions of BL-ZGNRs induced by external electric fields and also the optical selection rules for the incident light polarized along the longitudinal and transverse directions. We find that the excitations from the edge states are crucial for the optical properties of BL-ZGNRs in the antiferromagnetic phase. We show that the low energy part of the optical absorption can be modulated by the external transverse electric field, and there is a broad band low frequency absorption enhancement for the transverse-polarized incident light in the charge-polarized state of BL-ZGNRs.  相似文献   

12.
We report the polarized optical absorption spectra of single-walled 4 A carbon nanotubes arrayed in the channels of an AlPO (4)-5 single crystal. When the light electric field (E) is polarized parallel to the tube direction (c), the spectra display a sharp peak at 1.37 eV, with two broadbands at 2.1 and 3.1 eV. In the E perpendicular c configuration, the tube is nearly transparent in the measured energy region 0.5-4.1 eV. The optical dipole selection rules are discussed, and the absorption bands are assigned to the dipole transitions between the Van Hove singularities. The measured absorption spectra agreed well with the ab initio calculations of band structure based on the local density function approximation.  相似文献   

13.
基于电子自旋弛豫全光开关中的瞬态特性   总被引:1,自引:1,他引:0  
蒋振  王涛  王冰  李刚 《光学学报》2008,28(7):1374-1378
设计了基于电子自旋弛豫的透射式全光开关模犁.该光开关具有开关时间短、结构简单,光学非线性强等特点.研究在右旋圆偏振光抽运下 GaAs/AlGaAs半导体多量子阱(MQWs)中以相空间填充(PSF)和库仑屏蔽(CS)为主要因素导致的激子吸收饱和行为,计算与抽运光同向(探测光与抽运光的圆偏振方向相同)和反向(探测光与抽运光的圆偏振方向相反)的圆偏振探测光吸收系数的变化,得到两种圆偏振光差分透射率改变量随延迟时间的变化.实验采用飞秒抽运-探测技术,获得了室温下GaAs/AlGaAs多量子阱同向圆偏振探测光的透射曲线,观察到了明显的饱和吸收现象,与数值模拟的结果相符.  相似文献   

14.
The high-frequency absorption of electromagnetic radiation in systems with a noncollinear spatial magnetization distribution has been calculated. A medium with a helicoidal magnetic structure and a superlattice whose period contains two layers with noncollinear magnetizations are considered. An additional absorption peak related to the electron transitions from one spin subband to another under the action of a variable linearly polarized electric field is shown to appear in such systems at frequencies near the spin splitting of the conduction band.  相似文献   

15.
Using two-color optical coherence control techniques in intrinsic GaAs at 80 K with orthogonally polarized 70 fs, 1430 and 715 nm pulses, we generate a pure spin source current that yields a transverse Hall pure charge current; or alternatively, with parallel polarized pulses, we generate a pure charge source current that yields a pure spin current. By varying the relative phase or polarization of the incident pulses, one can effectively tune the type, magnitude and direction of both the source and transverse currents without application of electric or magnetic fields.  相似文献   

16.
Conversion of spin into directed electric current in quantum wells   总被引:1,自引:0,他引:1  
A nonequilibrium population of spin-up and spin-down states in quantum well structures has been achieved applying circularly polarized radiation. The spin polarization results in a directed motion of free carriers in the plane of a quantum well perpendicular to the direction of light propagation. Because of the spin selection rules the direction of the current is determined by the helicity of the light and can be reversed by switching the helicity from right to left handed. A microscopic model is presented which describes the origin of the photon helicity driven current. The model suggests that the system behaves as a battery which generates a spin polarized current.  相似文献   

17.
Conduction electrons are used to optically polarize, detect, and manipulate nuclear spin in a (110) GaAs quantum well. Using optical Larmor magnetometry, we find that nuclear spin can be polarized along or against the applied magnetic field, depending on field polarity and tilting of the sample with respect to the optical pump beam. Periodic optical excitation of the quantum-confined electron spin reveals a complete spectrum of optically induced and quadrupolar-split nuclear resonances, as well as evidence for Deltam = 2 transitions.  相似文献   

18.
Electrically induced ordering and manipulation of electron spins in semiconductors has a number of practical advantages over the established techniques using circularly polarized light sources, external magnetic fields and spin injection from a ferromagnet. The spin-Hall effect utilizes spin–orbit coupling to induce edge spin accumulation in response to a longitudinal electric field which can be applied locally and lead to low energy consumption devices. We study spin accumulation near the edge of a weakly disordered two-dimensional hole gas (2DHG) in a GaAs/AlGaAs heterostructure where the magnitude of the transverse spin current approaches the intrinsic, disorder independent value, in contrast to the impurity dominated regime observed in 3D electron doped systems. In our experiment, the induced spin polarization is detected by the electroluminescence resulting from two p–n junctions bordering the 2DHG channel. When an electric field is applied across the 2DHG channel, a non-zero out-of-plane component of the spin is optically detected. The sign of the spin depends on the direction of the field and is opposite for the two edges, consistent with theory predictions. We also report and analyze an in-plane spin-polarization effect induced in the device by asymmetric electron–hole recombination.  相似文献   

19.
A new GaAs(100) spin polarized electron source with an optical polarimeter, which is employed in the field of polarized electron and gas atom collision, is presented in detail. The apparatus is passive-magnetic-shielded by a box and a cylinder made of nickel--iron--molybdenum soft magnetic alloy without Helmholtz coil arrangement. And a uniformly distributed residual magnetic field of less than 5×10-7,T is obtained near the collision area. The spin polarized electron beam is transmitted and focused onto collision point from photocathode by a set of electron optics with more than 25% transmission 95cm distance through an 1mm diameter aperture. Construction and operation of the apparatus, such as vacuum and magnetic shielding system, photocathode, laser optics, electron optics and polarimeter are discussed. The polarization of the spin polarized electron beam is determined to be 30.8\pm3.5% measured with a He optical polarimeter.  相似文献   

20.
The interaction between the electric field E and spins in multiorbital Mott insulators is studied theoretically. We find a generic coupling mechanism, which works for all crystal lattices and which does not involve relativistic effects. It couples E to the "internal" electric field e originating from the dynamical Berry phase. We discuss several effects of this interaction: (i) an unusual electron spin resonance, (ii) the displacement of spin textures in an applied electric field, and (iii) the resonant absorption of circularly polarized light by Skyrmions, magnetic bubbles, and magnetic vortices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号