首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
While natural rubber is commonly considered as an incompressible material, this study shows how carbon black-reinforced natural rubber (NR-CB), when subjected to various mechanical loading conditions (uniaxial, hydrostatic, monotonic, cyclic), is affected by volume change. Experiments show a volume variation even for low straining values and a significant volume change for large elongations. Moreover, volume change can be either reversible or not, depending on the loading conditions. It is related to a competition between void growth, chain orientation, and stress softening. At a microscopic scale, in situ Scanning Electron Microscopy (SEM) examinations and image analysis allow one to record damage and microscopic volume change as a function of elongation. Therefore the volume change measured at the microscopic scale is equal to the macroscopic one. Based on the experimental results, this paper shows that the hypothesis of incompressibility is worth being revisited. Thus, a nearly compressible approach was considered, where the strain energy is assumed to be the sum of spherical and deviatoric parts that are both affected by damage. The model was then implemented in a finite-element code. Good agreement was obtained between experimental results and model predictions for low triaxiality test conditions.  相似文献   

4.
Plastic flow localization in ductile materials subjected to pure shear loading and uniaxial tension is investigated respectively in this paper using a reduced strain gradient theory, which consists of the couple-stress (CS) strain gradient theory proposed by Fleck and Hutchinson (1993) and the strain gradient hardening (softening) law (C–W) proposed by Chen and Wang (2000). Unlike the classical plasticity framework, the initial thickness of the shear band and the strain rate distribution in both cases are predicted analytically using a bifurcation analysis. It shows that the strain rate is obviously non-uniform inside the shear band and reaches a maximum at the center of the shear band. The initial thickness of the shear band depends on not only the material intrinsic length lcs but also the material constants, such as the yield strength, ultimate tension strength, the linear hardening and softening shear moduli. Specially, in the uniaxial tension case, the most possible tilt angle of shear band localization is consistent qualitatively with the existing experimental observations. The results in this paper should be useful for engineers to predict the details of material failures due to plastic flow localization.  相似文献   

5.
Recent experimental evidence points to limitations in characterizing the critical strain in ductile fracture solely on the basis of stress triaxiality. A second measure of stress state, such as the Lode parameter, is required to discriminate between axisymmetric and shear-dominated stress states. This is brought into the sharpest relief by the fact that many structural metals have a fracture strain in shear, at zero stress triaxiality, that can be well below fracture strains under axisymmetric stressing at significantly higher triaxiality. Moreover, recent theoretical studies of void growth reveal that triaxiality alone is insufficient to characterize important growth and coalescence features. As currently formulated, the Gurson Model of metal plasticity predicts no damage change with strain under zero mean stress, except when voids are nucleated. Consequently, the model excludes shear softening due to void distortion and inter-void linking. As it stands, the model effectively excludes the possibility of shear localization and fracture under conditions of low triaxiality if void nucleation is not invoked. In this paper, an extension of the Gurson model is proposed that incorporates damage growth under low triaxiality straining for shear-dominated states. The extension retains the isotropy of the original Gurson Model by making use of the third invariant of stress to distinguish shear dominated states. The importance of the extension is illustrated by a study of shear localization over the complete range of applied stress states, clarifying recently reported experimental trends. The extension opens the possibility for computational fracture approaches based on the Gurson Model to be extended to shear-dominated failures such as projectile penetration and shear-off phenomena under impulsive loadings.  相似文献   

6.
Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. It is significant to analyze the localization of deformation and damage, and to study the complete stress–strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading. On the basis of micromechanics, the complete stress–strain relation including linear elasticity, nonlinear hardening, rapid stress drop and strain softening is obtained. The behaviors of rapid stress drop and strain softening are due to localization of deformation and damage. The constitutive model, which analyze localization of deformation and damage, is distinct from the conventional model. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

7.
ON NONPROPORTIONAL CYCLIC PLASTIC BEHAVIOR OF STEEL 40   总被引:1,自引:0,他引:1  
An experimental investigation was carried out on the flow characteristicand hardening of steel 40 subjected to complex combined axial-torsional cyclicstraining. For a specific cyclic strain path, the steel has mainly cyclic softeningbehavior when the strain amplitude is small. While with an increase of the effectivestrain amplitude, the softening becomes small, but there is the cyclic softening eventhough the steel is subjected to the cyclic loading by a square strain path. However, thesteel has cyclic additional hardening by a nonproportional path, compared with theproportional cycling. Generally, the additional hardening is small and its historicaleffect is not obvious at small strain amplitude. The additional hardening is remarkableby a cross-triangular strain path of large strain amplitude. The memory of the historyof nonproportional cyclic loading, the direction of plastic flow and the plastic modulusof the steel were also studied.  相似文献   

8.
9.
A phenomenological macroscopic plasticity model is developed for steels that exhibit strain-induced austenite-to-martensite transformation. The model makes use of a stress-state dependent transformation kinetics law that accounts for both the effects of the stress triaxiality and the Lode angle on the rate of transformation. The macroscopic strain hardening is due to nonlinear kinematic hardening as well as isotropic hardening. The latter contribution is assumed to depend on the dislocation density as well as the current martensite volume fraction. The constitutive equations are embedded in the framework of finite strain isothermal rate-independent anisotropic plasticity. Experimental data for an anisotropic austenitic stainless steel 301LN is presented for uniaxial tension, uniaxial compression, transverse plane strain tension and pure shear. The model parameters are identified using a combined analytical–numerical approach. Numerical simulations are performed of all calibration experiments and excellent agreement is observed. Moreover, we make use of experimental data from ten combined tension and shear experiments to validate the proposed constitutive model. In addition, punch and notched tension tests are performed to evaluate the model performance in structural applications with heterogeneous stress and strain fields.  相似文献   

10.
An isotropic formulation of the viscoplasticity theory for small strain and based on overstress with a differential growth law for the equilibrium stress is introduced. The four material constants and the two material functions of the theory are determined from uniaxial tensile tests involving strain-rate changes at room temperature and performed on a 6061 T6 Aluminum Alloy. Subsequently the theory is used to predict the biaxial behavior under axialtorsion loading. All tests are under strain control and involve proportional loading and axial followed by torsional straining (and vice versa). Cyclic histories include in-phase and out-of-phase cycling. The predictions of the theory are very reasonable for this cyclically neutral alloy. For cyclic hardening or softening materials a modification of the theory is necessary and is under development.  相似文献   

11.
The plastic behavior of an annealed HASTELLOY® C-22HS™ alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.  相似文献   

12.
In this article we study the influence of double strain gradient, reflecting microstructural inhomogeneities, on the instability regime of a thermoviscoplastic material caused by biaxial loading. A perturbation analysis proposed earlier by Dudzinski and Molinari [1991] is used. The gesults show the influence of the microstructural coefficient on the rate of growth of the instability for various values of strain hardening, strain rate sensitivity, and straining path. The role of optimal orientation is presented, and the cases of isothermal and anisothermal deformation are analysed. Our results are also compared with those predicted by the aforementioned analysis. Finally, a comparison of uniaxial and biaxial situations concerning the role of the microstructural parameter is presented.  相似文献   

13.
通过求解一个第二类Fredholm方程,得到了基于非局部塑性软化模型的应变局部化问题理论解,结果表明,只有在当采用过非局部修正形式的非局部塑性软化模型才能得到应变局部化解,且得到的塑性应变分布和荷载响应依赖于所引入的特征长度及过非局部权参数。通过一维应变局部化有限元数值解,验证了非局部理论的引入能克服计算结果的网格敏感...  相似文献   

14.
Uniaxial ratcheting and failure behaviors of two steels   总被引:2,自引:0,他引:2  
The strain cyclic characteristics, ratcheting and failure behaviors of 25CDV4.11 steel and SS304 stainless steel were experimentally studied under uniaxial cyclic tests and at room temperature. The cyclic hardening/softening features of the materials were first observed under uniaxial strain cycling; and then the ratcheting and failure behaviors of the materials were researched in detail under cyclic stressing. The effects of stress amplitude and mean stress on the ratcheting and failure were discussed under uniaxial asymmetrical stress cycling. It is concluded that the ratcheting and failure behaviors of the materials depend greatly on the cyclic softening/hardening features of the materials and the stress values of cyclic loading. Some conclusions useful to understand the fatigue failure of the materials presented under asymmetrical cyclic stressing are obtained.  相似文献   

15.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   

16.
Some novel discriminating multiaxial cyclic strain paths with incremental and random sequences were used to investigate cyclic deformation behavior of materials with low and high sensitivity to non-proportional loadings. Tubular specimens made of 1050 QT steel with no non-proportional hardening and 304L stainless steel with significant non-proportional hardening were used. 1050 QT steel was found to exhibit very similar behavior under various multiaxial loading paths, whereas significant effects of loading sequence were observed for 304L stainless steel. In-phase cycles with a random sequence of axial-torsion cycles on an equivalent strain circle were found to cause cyclic hardening levels similar to 90° out-of-phase loading of 304L stainless steel. In contrast, straining with a small increment of axial-torsion on an equivalent strain circle results in higher stress than for in-phase loading of 304L stainless steel, but the level of hardening is lower than for 90° out-of-phase loading. Tanaka’s non-proportionality parameter coupled with a Armstrong–Fredrick incremental plasticity model, and Kanazawa et al.’s empirical formulation as a representative of such empirical models were used to predict the stabilized stress response of the two materials under variable amplitude axial-torsion strain paths. Consistent results between experimental observations and predictions were obtained by employing the Tanaka’s non-proportionality parameter. In contrast, the empirical model resulted in significant over-prediction of stresses for 304L stainless steel.  相似文献   

17.
The time-dependent strain cyclic characteristics and ratchetting behaviours of SS304 stainless steel were investigated by uniaxial/multiaxial cyclic loading tests at room and elevated temperatures (350 and 700 °C). The effects of loading rate, peak/valley strain or stress holds, ambient temperature and non-proportional loading path on the cyclic softening/hardening and ratchetting behaviours of the material were discussed. It is shown that: the cyclic deformation of the material presents remarkable time-dependence at room temperature and 700 °C; the cyclic hardening feature and ratchetting strain depend significantly on straining or stressing rate, hold-time, ambient temperature and the non-proportionality of loading path; the time-dependent ratchetting is resulted from the slight opening of hysteresis loop and visco-plasticity together, and the viscosity is a dominating factor at 700 °C; at 350 °C, abnormal rate-dependence and quick shakedown of ratchetting are observed due to the dynamic strain aging of the material at this temperature. Some significant conclusions are obtained, which are useful to construct a constitutive model to describe the time-dependent ratchetting behaviour of the material. It is also stated that the unified visco-plastic constitutive model discussed here cannot provide reasonable simulation to the time-dependent ratchetting at 700 °C, especially to that with certain peak/valley stress hold, since the effect of the high viscosity on time-dependent ratchetting cannot be properly described by using a unified visco-plastic flow rule.  相似文献   

18.
Large strain finite element calculations of unit cells subjected to triaxial axisymmetric loadings are presented for plastically orthotropic materials containing a periodic distribution of aligned spheroidal voids. The spatial distribution of voids and the plastic flow properties of the matrix are assumed to respect transverse isotropy about the axis of symmetry of the imposed loading so that a two-dimensional axisymmetric analysis is adequate. The parameters varied pertain to load triaxiality, matrix anisotropy, initial porosity and initial void shape so as to include the limiting case of penny-shaped cracks. Attention is focussed on comparing the individual and coupled effects of void shape and material anisotropy on the effective stress–strain response and on the evolution of microstructural variables. In addition, the effect of matrix anisotropy on the mode of plastic flow localization is discussed. From the results, two distinct regimes of behavior are identified: (i) at high triaxialities, the effect of material anisotropy is found to be persistent, unlike that of initial void shape and (ii) at moderate triaxialities the influence of void shape is found to depend strongly on matrix anisotropy. The findings are interpreted in light of recent, microscopically informed models of porous metal plasticity. Conversely, observations are made in relation to the relevance of these results in the development and calibration of a broader set of continuum damage mechanics models.  相似文献   

19.
A discrete polycrystal model, designed to simulate a metal aggregate macro-element, is applied to the study of cyclic straining in copper. The numerical method of solution (an adaptation of the “finite element method”) incorporates a convergent discrete Green's function within the constrained minimum principle which governs the (crystallographic) plastic shear increments at each load step. Isothermal elastic moduli of copper crystals and Taylor's hardening rule with constant hardening modulus are used in the calculations. Numerical results are obtained for macroscopic elastic properties, cyclic stress-strain curves (which indicate the contribution of aggregate heterogeneity to macroscopic hardening), macroscopic plastic work, and residual (latent) strain energy through four loading cycles between fixed macrostrain limits. Other estimates for elastic properties also are included, and all results are compared, both qualitatively and quantitatively, with published experiments. The predictions of the model are in general satisfactory.  相似文献   

20.
In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号