首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Simple closed-form solutions for critical stress intensity factors were developed for edge dislocation emission from a blunt crack under mode I and mode II loading conditions. The solutions are applicable both for a slender elliptical hole and a long slit with blunted head. When the blunt crack considered degenerates to a sharp crack, the present solutions reduce to those previously reported in literature.  相似文献   

2.
The interaction between the special rotational deformation and the crack in deformed nanocrystalline ceramics and metals is investigated by the complex variable method. We have theoretically described the effects of the disclination quadrupole produced by the special rotational deformation on the emission of lattice dislocations from the crack tip. The complex form expressions of the stress field and the force field are divided. The critical stress intensity factors for the first dislocation emission are calculated. The influence of the disclination strength, the grain size (the quadrupole arms), the location of the disclinations and the angle between the crack plane and one of the quadrupole arms, as well as the crack length on the critical stress intensity factors is discussed in detail. And the results show that, the special rotational deformation has great influence on the dislocation emission from the crack tip.  相似文献   

3.
The effect of thermally activated energy on the dislocation emission from a crack tip in BCC metal Mo is simulated in this paper. Based on the correlative reference model on which the flexible displacement boundary scheme is introduced naturally, the simulation shows that as temperature increases the critical stress intensity factor for the first dislocation emission will decrease and the total number of emitted dislocations increase for the same external load. The dislocation velocity and extensive distance among partial dislocations are not sensitive to temperature. After a dislocation emission, two different deformation states are observed, the stable and unstable deformation states. In the stable deformation state, the nucleated dislocation will emit from the crack tip and piles up at a distance far away from the crack tip, after that the new dislocation can not be nucleated unless the external loading increases. In the unstable deformation state, a number of dislocations can be emitted from the crack tip continuously under the same external load. The project is supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号