首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A set of three-dimensional constitutive equations is proposed for modeling the nonlinear dissipative response of soft tissue. These constitutive equations are phenomenological in nature and they model a number of physical features that have been observed in soft tissue. The equations model the tissue as a composite of a purely elastic component and a dissipative component, both of which experience the same total dilatation and distortion. The stress response of the purely elastic component depends on dilatation, distortion and the stretch of material fibers, whereas the stress response of the dissipative component depends on distortional deformation only. The equations are hyperelastic in the sense that the stress is obtained by derivatives of a strain energy function, and they are properly invariant under superposed rigid body motions. In contrast with standard viscoelastic models of tissues, the proposed constitutive model includes the total deformation rate in evolution equations that can reproduce the observed physical feature that the hysteresis loops of most biological soft tissues are nearly independent of strain rate (Biomechanics, Mechanical Properties of Living Tissues, second ed. (1993)). Material constants are determined which produce good agreement with uniaxial stress experiments on superficial musculoaponeurotic system and facial skin.  相似文献   

2.
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.  相似文献   

3.
Continuous loading and unloading experiments are performed at different strain rates to characterize the large deformation behavior of polyurea under compressive loading. In addition, uniaxial compression tests are carried out with multistep strain history profiles. The analysis of the experimental data shows that the concept of equilibrium path may not be applied to polyurea. This finding implies that viscoelastic constitutive models of the Zener type are no suitable for the modeling of the rate dependent behavior of polyurea. A new constitutive model is developed based on a rheological model composed of two Maxwell elements. The soft rubbery response is represented by a Gent spring while nonlinear viscous evolution equations are proposed to describe the time-dependent material response. The eight material model parameters are identified for polyurea and used to predict the experimentally-measured stress-strain curves for various loading and unloading histories. The model provides a good prediction of the response under monotonic loading over wide range of strain rates, while it overestimates the stiffness during unloading. Furthermore, the model predictions of the material relaxation and viscous dissipation during a loading-unloading cycle agree well with the experiments.  相似文献   

4.
The equations relating stress rates to strain rates are formulated and conditions of stable deformation of isotropic hyperelastic bodies are described. Stress–strain relations are presented for pure shear and uniaxial and axisymmetric loading of a material with a constitutive function obtained by generalization of the constitutive function of Hooke's law. In the case of small strains, the diagrams virtually coincide with the linear diagrams following from Hooke's law. Ramification of solutions and transition to declining diagrams begin at the same time, irrespective of values of the constants of the material, when large stresses of the order of the shear modulus are reached.  相似文献   

5.
《力学快报》2022,12(6):100383
The present study is focused on the constitutive modeling for the mechanical behavior of rubber reinforced with filler particles. A filler-dependent energy density function is proposed with all the continuum mechanics-based necessities of an effective hyperelastic material model. The proposed invariant-based energy function comprises a single set of material parameters for a material subjected to several modes of loading conditions. The model solution agrees well with existing experimental results. Later, the effect of varying concentrations of filler particles in the rubber matrix is also studied.  相似文献   

6.
7.
The main objective of this paper is to develop a continuum model for directional tensile failure that can simulate weakening and void formation due to tensile failure. Directionality in the model allows simulation of weakening to tension applied in one direction, without weakening to subsequent tension applied in perpendicular directions. The model is developed within the context of a properly invariant non-linear thermomechanical theory. Specifically, it is shown how the model can be combined with general constitutive equations for porous compaction and dilation, as well as viscoplasticity. The thermoelastic response is hyperelastic, with the stress being determined by derivatives of the Helmholtz free energy, and the material is considered to be elastically isotropic. In particular, it is assumed that the rate of inelasticity due to tensile failure is coaxial with the tensor measure of elastic deformation (and hence stress). This causes the rate of dissipation to take a particularly simple form which can be shown to satisfy the second law of thermodynamics. A numerical procedure for integrating these evolution equations is proposed and a number of examples are considered to explore the response of the model to different loading histories.  相似文献   

8.
The behavior and failure of brittle materials is significantly influenced by the existence of inhomogeneities such as pores and cracks. The proposed constitutive equations model the coupled micro-mechanical response of these inhomogeneities through evolution equations for scalar measures of porosity, and a “density” function of randomly oriented penny-shaped cracks. A specific form for the Helmholtz free energy is proposed which incorporates the known Mie–Grüneisen constitutive equation for the nonporous solid. The resulting thermomechanical constitutive equations are valid for large deformations and the elastic response is hyperelastic in the sense that the stress is related to a derivative of the Helmholtz free energy. These equations allow for the simulation of the following physical phenomena exhibited by brittle materials: (1) high compressive strength compared with much lower tensile strength; (2) inelastic deformation due to growth and nucleation of cracks and pores instead of due to dislocation dynamics associated with metal plasticity; and (3) loss of integrity (degradation of elastic moduli) due to damage accumulation. The main features of the model are demonstrated by examples of cyclic loading in homogeneous deformation and by a simulation of a dynamic plate-impact experiment on AD85 ceramic. The theoretical predictions of the model are in excellent agreement with the dynamic experimental data.  相似文献   

9.
A set of constitutive equations for large rate-dependent elastic-plastic-damage materials at elevated temperatures is presented to be able to analyze adiabatic high strain rate deformation processes for a wide range of stress triaxialities. The model is based on the concepts of continuum damage mechanics. Since the material macroscopic thermo-mechanical response under large strain and high strain rate deformation loading is governed by different physical mechanisms, a multi-dissipative approach is proposed. It incorporates thermo-mechanical coupling effects as well as internal dissipative mechanisms through rate-dependent constitutive relations with a set of internal variables. In addition, the effect of stress triaxiality on the onset and evolution of plastic flow, damage and failure is discussed.Furthermore, the algorithm for numerical integration of the coupled constitutive rate equations is presented. It relies on operator split methodology resulting in an inelastic predictor-elastic corrector technique. The explicit finite element program LS-DYNA augmented by an user-defined material subroutine is used to approximate boundary-value problems under dynamic loading conditions. Numerical simulations of dynamic experiments with different specimens are performed and good correlation of numerical results and published experimental data is achieved. Based on numerical studies modified specimens geometries are proposed to be able to detect complex damage and failure mechanisms in Hopkinson-Bar experiments.  相似文献   

10.
短纤维增强三元乙丙橡胶包覆薄膜,是一种应用于固体火箭发动机缠绕包覆装药的新型复合材料.为了描述其在工作过程中受振动、冲击等载荷作用时的力学行为,基于黏弹性理论和纤维增强连续介质力学理论,提出了一种考虑应变率强化效应的横观各向同性黏-超弹本构模型.模型中应变能函数被分解为超弹性应变能和黏性应变能,其中超弹性应变能包括表征各向同性的橡胶基体应变能和表征各向异性的纤维拉伸应变能,黏性应变能采用表征橡胶和纤维黏性响应的宏观唯象模型.选取表征各应变能的函数形式,经过数学变换、替代、叠加,求解确定最终的应力应变形式,明确模型参数获取的具体步骤,将预测结果与实验结果对比分析,准确性较高.研究表明:该模型能有效预测材料在低应变率下纤维方向为0?~45?的非线性率相关力学特性;模型形式易于实现有限元开发,对固体火箭发动机装药结构完整性分析具有参考价值.  相似文献   

11.
Similar to the theory of endochronic plasticity, modified by Valanis in 1980, a simple endochronic transient creep model of metals is proposed by using a definition of intrinsic time ζ, measured within the creep strain tensor space, whose metric tensor is treated as a simple power form of creep strain-rate sensitive material function. The resulting constitutive equation of creep (Endocreep) contains only three material constants whose values can be determined completely by a simple creep test. An incremental form involving isothermally constant creep stress, with or without jump, and constant stress with temperature jump, are then formulated.In the applications of Endocreep on 304SS under variable temperature creep, data of simple creep tests, provided by Ohashi et al. at 650°C, Ohno et al. at 600°C, Findley and Cho at 593°C–649°C, are employed to determine material constants. The computational results in the simulation of creep tests under step-up and step-down temperature with constant axial stress are found in very good agreement with data provided by Findley and Cho. However, the results reveal that the model is too simple to deal with the recovery response of unloading. Beside this deficiency the model and its computational method proposed have a potential in the future FEM creep analysis of general thermomechanical loading history.  相似文献   

12.
Nonlinear thermoelastic–viscoplastic constitutive equations for large deformations with isotropic and directional hardening, are incorporated into a micromechanical finite strain analysis. As a result of this analysis, which is based on the homogenization technique for periodic microstructures, a global thermoinelastic constitutive law is established that governs the overall response of multiphase materials under finite deformations. This constitutive law is expressed in terms of the instantaneous effective mechanical and thermal stress tangent tensors together with the instantaneous global inelastic stress tensor that represents the viscoplastic effects. Results for a thermoinelastic matrix reinforced by a hyperelastic compressible material are given that illustrate the response of fibrous and particulate composites to various types of loading.  相似文献   

13.
Traditional constitutive frameworks for high-strain materials are ill-suited to solve extension and inflation, one of the simplest problems involving tubes, or more complicated problems. Moreover, it is experimentally necessary to minimize the covariance amongst constitutive response functions. We sought, hence, a constitutive framework that minimizes covariance and simplifies the balance equations for tubes, hoses, and arteries. Central to this theory are six objective scalars or strain attributes that decouple dilatation and distortion and succinctly define the strain. Because there is a one-to-one relationship between them and the components of the Right Cauchy–Green deformation tensor, these six strain attributes can be used to define the strain energy density function for hyperelastic materials. This approach yields mostly orthogonal response terms for high strain deformation (14 of the 15 inner products vanish). For infinitesimal deformation, the response terms are fully orthogonal. Further utility is demonstrated by showing how the governing equations are simplified for tubular structures and how response functions can be determined for the first time from the extension and inflation of thick-walled tubes composed of a homogeneous material with incompressible, hyperelastic behavior. This solution is applicable for materials with orthotropic behavior, and using the chain rule, this solution can be used for materials with isotropic behavior.  相似文献   

14.
The problem of inhomogeneous material with internal friction subjected to complex loading is solved in this paper. Different complex loadings are considered by continuously rotating the principal axes of the strain tensor. A hypoplastic model with internal variables is used to describe the internal structure of the material. The model can describe loading and unloading states. It accounts for essential non-linearity of constitutive equations. The finite element algorithm reduces the problem to a system of nonlinear algebraic equations of high order which are solved by the Newton's method. The results show a good qualitative and quantitative assessment of calculated parameters when compared with data obtained from experiments. Redistribution of internal mass takes place under loading such that a fractal structure is developed in time reflecting the material discontinuities.  相似文献   

15.
This paper presents a composites-based hyperelastic constitutive model for soft tissue. Well organized soft tissue is treated as a composite in which the matrix material is embedded with a single family of aligned fibers. The fiber is modeled as a generalized neo-Hookean material in which the stiffness depends on fiber stretch. The deformation gradient is decomposed multiplicatively into two parts: a uniaxial deformation along the fiber direction and a subsequent shear deformation. This permits the fiber-matrix interaction caused by inhomogeneous deformation to be estimated by using effective properties from conventional composites theory based on small strain linear elasticity and suitably generalized to the present large deformation case. A transversely isotropic hyperelastic model is proposed to describe the mechanical behavior of fiber-reinforced soft tissue. This model is then applied to the human annulus fibrosus. Because of the layered anatomical structure of the annulus fibrosus, an orthotropic hyperelastic model of the annulus fibrosus is developed. Simulations show that the model reproduces the stress-strain response of the human annulus fibrosus accurately. We also show that the expression for the fiber-matrix shear interaction energy used in a previous phenomenological model is compatible with that derived in the present paper.  相似文献   

16.
17.
A phenomenological material model to represent the multiaxial material behaviour of shape memory alloys is proposed. The material model is able to represent the main effects of shape memory alloys: the one-way shape memory effect, the two-way shape memory effect due to external loads, the pseudoelastic and pseudoplastic behaviour as well as the transition range between pseudoelasticity and pseudoplasticity.The material model is based on a free energy function and evolution equations for internal variables. By means of the free energy function, the energy storage during thermomechanical processes is described. Evolution equations for internal variables, e.g. the inelastic strain tensor or the fraction of martensite are formulated to represent the dissipative material behaviour. In order to distinguish between different deformation mechanisms, case distinctions are introduced into the evolution equations. Thermomechanical consistency is ensured in the sense that the constitutive model satisfies the Clausius–Duhem inequality.Finally, some numerical solutions of the constitutive equations for isothermal and non-isothermal strain and stress processes demonstrate that the various phenomena of the material behaviour are well represented. This applies for uniaxial processes and for non-proportional loadings as well.  相似文献   

18.
提出了一种能够表征短纤维增强橡胶的横观各向同性超弹性本构模型,并结合试验体系,对其在数值分析中的应用方法和效果进行了研究。基于连续介质力学理论,建立了横观各向同性材料的应变能函数,推导得到不同变形形式下的应力应变关系,给出材料参数辨识试验方法,并成功应用于某短纤维增强橡胶测试中,得到表征其超弹性特性的相关材料参数。利用有限元软件ANSYS对不同纤维排布方向的单轴拉伸和平行纤维方向的平面拉伸进行仿真计算,并对比相应试验数据,以验证材料参数的可靠性。最后基于已验证的本构模型,建立了某铣槽装备减振环仿真模型,并对其进行了校核计算。研究结果表明,本文提出的本构模型能够有效表征短纤维增强橡胶的静态力学特性并且方便嵌入现有的有限元软件中,具有材料参数少、测试简便和结果准确等特点,工程实用性强。  相似文献   

19.
磁性形状记忆合金力磁耦合行为的唯象模型研究   总被引:1,自引:0,他引:1  
本文基于热力学及耗散概念,推导了一种磁性形状记忆合金(MSMA)的力磁耦合三维唯象本构关系。采用内变量模拟微观相结构及磁结构的演化,考虑了马氏体相变过程及马氏体重定向过程。同时,本文摒弃了传统的单畴假设,运用双畴模型来模拟循环加载下的磁畴结构演化。根据文献中的二维加载情况的实验数据确定本模型的参数。数值模拟结果表明:本文的模型可以很好的捕捉磁性形状记忆合金的形状记忆效应、应变及磁化响应的滞后性。应变及磁化响应模拟结果明显比文献中的理论模型更加吻合实验数据,尤其是低磁场时尤为明显。  相似文献   

20.
Variational and invariance principles of modern continuum mechanics are used to establish the field equations, boundary conditions and constitutive relations of a non-linear hyperelastic dielectric with constant magnitude ‘saturated’ polarization. Euclidean invariance places restrictions on the Lagrangian and implies the basic conservation laws. The principles of objectivity and material symmetry restrict the form of the constitutive equations. Four equivalent forms of the free energy functional are listed and for one of these forms the minimal isotropy integrity basis. consisting of eleven invariants, is constructed. The positive definiteness of the energy functional is used to derive various inequalities for the material constants of isotropic dielectrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号