首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this work, a thermodynamically consistent gradient formulation for partially saturated cohesive-frictional porous media is proposed. The constitutive model includes a classical or local hardening law and a softening formulation with state parameters of non-local character based on gradient theory. Internal characteristic length in softening regime accounts for the strong shear band width sensitivity of partially saturated porous media regarding both governing stress state and hydraulic conditions. In this way the variation of the transition point (TP) of brittle-ductile failure mode can be realistically described depending on current confinement condition and saturation level. After describing the thermodynamically consistent gradient theory the paper focuses on its extension to the case of partially saturated porous media and, moreover, on the formulation of the gradient-based characteristic length in terms of stress and hydraulic conditions. Then the localization indicator for discontinuous bifurcation is formulated for both drained and undrained conditions.  相似文献   

2.
Conditions for discontinuous bifurcation in limit states of selective non-local thermodynamically consistent gradient theory for quasi-brittle materials like concrete are evaluated by means of both geometrical and analytical procedures. This constitutive formulation includes two internal lengths, one related to the strain gradient field that considers the degradation of the continuum in the vicinity of the considered material point. The other characteristic length takes into account the material degradation in the form of energy release in the cracks during failure process evolution.The variation from ductile to brittle failure in quasi-brittle materials is accomplished by means of the pressure dependent formulation of both characteristic lengths as described by Vrech and Etse (2009).In this paper the formulation of the localization ellipse for constitutive theories based on gradient plasticity and fracture energy plasticity is proposed as well as the explicit solutions for brittle failure conditions in the form of discontinuous bifurcation. The geometrical, analytical and numerical analysis of discontinuous bifurcation condition in this paper are comparatively evaluated in different stress states and loading conditions.The included results illustrate the capabilities of the thermodynamically consistent selective non-local gradient constitutive theory to reproduce the transition from ductile to brittle and localized failure modes in the low confinement regime of concrete and quasi-brittle materials.  相似文献   

3.
A new hypoplastic equation is proposed and its capacity of representing the mechanical behaviour of a silty soil is examined. In this constitutive equation a particular soil is characterised by four material constants having a clear physical meaning (three of them are standard in soil mechanics), which makes the calibration procedure and the interpretation of results easier. Its performance in the prediction of results of several laboratory tests (especially triaxial tests along different stress paths) and as compared to Cam–Clay predictions is, in general, good. The nonexistence of an elastic domain in hypoplasticity provides a more realistic response than that of Cam–Clay in stress paths in which the octahedral stress is reduced. The equation is able to reproduce important characteristics of soils as critical states, the normalised behaviour, the behaviour in proportional deformations, the behaviour in different stress paths. Besides, the equation is simple enough to permit a comprehensive analysis of its response. This is done with the help of the theory of systems of ordinary differential equations. Main results are analytical solutions in proportional deformations and the response diagram.  相似文献   

4.
A thermodynamically consistent multi-scale, rate dependent, non local approach is developed in this work for geo-materials in conjunction with the anisotropic modified Cam Clay model. The gradient for the micro-structure is incorporated through the micro level gradient of the back-stress and volumetric strain while the gradient for macro-structure is incorporated through the macro level gradient of back-stress and volumetric plastic strain. Gradient results in the regularization of the local behavior. Visco-plasticity is also incorporated for an additional regularization of the local behavior. Therefore, the effects of two separate regularizations are naturally separated. The plastic spin is incorporated to separate the effect of micro-structural rotation from the gradient effect. The flow characteristics of the soil is also incorporated in order to separate the viscosity effect from the flow effect.Through this multi scale non local approach, a more realistic simulation of large strain problems such as shear band formation can be achieved.  相似文献   

5.
The effects of void size and hardening in a hexagonal close-packed single crystal containing a cylindrical void loaded by a far-field equibiaxial tensile stress under plane strain conditions are studied. The crystal has three in-plane slip systems oriented at the angle 60° with respect to one another. Finite element simulations are performed using a strain gradient crystal plasticity formulation with an intrinsic length scale parameter in a non-local strain gradient constitutive framework. For a vanishing length scale parameter the non-local formulation reduces to a local crystal plasticity formulation. The stress and deformation fields obtained with a local non-hardening constitutive formulation are compared to those obtained from a local hardening formulation and to those from a non-local formulation. Compared to the case of the non-hardening local constitutive formulation, it is shown that a local theory with hardening has only minor effects on the deformation field around the void, whereas a significant difference is obtained with the non-local constitutive relation. Finally, it is shown that the applied stress state required to activate plastic deformation at the void is up to three times higher for smaller void sizes than for larger void sizes in the non-local material.  相似文献   

6.
In this paper, a gradient-enhanced 3-D phenomenological model for shape memory alloys using the non-local theory is developed based on a 1-D constitutive model. The method utilizes a non-local field variable in its constitutive framework with an implicit gradient formulation in order to achieve results independent of the finite element discretization. An efficient numerical approach to implement the non-local gradient-enhanced model in finite element codes is proposed. The model is used to simulate stress drop at the onset of transformation, and its performance is evaluated using different experimental data. The potential of the presented numerical approach for behavior of shape memory alloys in eliminating mesh-dependent simulations is validated by conducting various localization problems. The numerical results show that the developed model can simulate the observed unstable behaviors such as stress drop and deviation of local strain from global strain during nucleation and propagation of martensitic phase.  相似文献   

7.
Shear band localization is investigated by a strain-gradient-enhanced damage model for quasi-brittle geomaterials. This model introduces the strain gradients and their higher-order conjugate stresses into the framework of continuum damage mechanics. The influence of the strain gradients on the constitutive behaviour is taken into account through a generalized damage evolutionary law. A weak-form variational principle is employed to address the additional boundary conditions introduced by the incorporation of the strain gradients and the conjugate higher-order stresses. Damage localization under simple shear condition is analytically investigated by using the theory of discontinuous bifurcation and the concept of the second-order characteristic surface. Analytical solutions for the distributions of strain rates and strain gradient rates, as well as the band width of localised damage are found. Numerical analysis demonstrates the shear band width is proportionally related to the internal length scale through a coefficient function of Poisson’s ratio and a parameter representing the shape of uniaxial stress–strain curve. It is also shown that the obtained distributions of strains and strain gradients are well in accordance with the underlying assumptions for the second-order discontinuous shear band boundary and the weak discontinuous bifurcation theory.  相似文献   

8.
In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.  相似文献   

9.
This paper focuses on the development of a thermodynamic approach to constitutive modelling of concrete materials, with emphasis on the use of non-local damage models. Effort is put on the construction of a consistent and rigorous thermodynamic framework, which readily allows the incorporation of non-local features into the constitutive modelling. This is an important feature in developing non-local constitutive models based on thermodynamics. Examples of non-local constitutive models derived from this framework and numerical examples are given to demonstrate the promising features of the proposed approach.  相似文献   

10.
A new two-scale model is proposed for derivation of the macroscopic modified effective stress principle for swelling porous media saturated by an electrolyte solution containing finite size ions. A non-local pore-scale model is developed within the framework of Statistical Mechanics in conjunction with the thermodynamic approach based on Density Functional Theory leading to a nonlinear integral Fredholm equation of second kind for the ion/nanopore correlation function coupled with Poisson problem for the electric double layer potential. When combined with the fluid equilibrium condition such non-local electrochemical problem gives rise to a constitutive law for the fluid stress tensor in terms of the disjoining pressure which is decomposed into several components of different nature. The homogenization procedure based on formal asymptotic expansions is applied to up-scale the model to the macroscale leading to a two-scale constitutive law for the swelling pressure appearing in the modified effective stress principle with improved accuracy incorporating the deviations from the Gouy–Chapman Poisson–Boltzmann-based theory due to the finite size short-range ion–ion correlation effects. The integro-differential problem posed in a periodic cell is discretized by collocation schemes. Numerical results are obtained for a stratified arrangement of parallel macromolecules showing that the effects of ion–ion correlation forces give rise to anomalous attraction patterns between the particles for divalent ions.  相似文献   

11.
弹塑性材料的平面应力非连续分岔   总被引:4,自引:0,他引:4  
张永强  俞茂宏 《力学学报》2001,33(5):706-713
基于平面应力非连续分岔特性的一般描述,运用统一强度理论,得出了非相关流动情形的弹塑性材料平面应力非连续分岔的起始方位角以及相应的最大硬化模量的统一解析解,并且分析了材料拉压异性以及不同程度的中间应力对结果的影响,进而发现所得的结果一强度准则的选取有关,揭示了在分岔研究中正确选取符合材料特性的强度准则的重要性。最后,同特线理论比较发现平面应力剪切带型非连续分岔同平面应力特征线重合。  相似文献   

12.
The present paper proposes a thermodynamically consistent Forchheimer-type filter law for application in macroscopic porous media theories. The constitutive flow equation is thereby capable of describing the essential nonlinearities during 3-d fluid percolation through deformable porous solids. In particular, tortuosity effects, anisotropic properties, and the indispensable influence of finite distortions of the interconnected pore space are accounted for. However, the common shape of a Darcy-type relation is retained by assigning all nonlinearities to a general permeability tensor. Finally, to show the validity and applicability of the proposed formulation, the filter law is correlated with the data of permeability experiments on a high-porosity polyurethane foam and is used in a 3-d finite element analysis to simulate the pneumatic damping properties of the material.  相似文献   

13.
A thermodynamic framework endowed with the concept of non-locality residual is adopted to derive non-local models of integral-type for non-homogeneous linear elastic materials. Two expressions of the free energy are considered: the former yields a one-component non-local stress, the latter leads to a two-component local–non-local stress since the stress is expressed as the sum of the classical local stress and of a non-local component identically vanishing in the case of constant strains. The attenuation effects are accounted for by a symmetric space weight function which guarantees the constant strain requirement as well as the dual constant stress condition everywhere in the body. The non-local and non-homogeneous elastic structural boundary-value problem under quasi-static loads is addressed in a geometrically linear range. The complete set of variational formulations for the structural problem is then provided in a unitary framework. The solution uniqueness of the non-local structural model is proved and the non-local FEM is addressed starting from the non-local counterpart of the total potential energy. Numerical applications are provided with reference to a non-homogeneous bar in tension using the Fredholm integral equation and the non-local FEM. The solutions show no pathological features such as numerical instability and mesh sensitivity for degraded bar conditions.  相似文献   

14.
15.
多孔连续体理论框架下的非饱和多孔介质广义有效压力定义和Bishop参数的定量表达式长期以来存在争议,这也影响了对与其直接相关联的非饱和多孔介质广义Biot有效应力的正确预测.基于随时间演变的离散固体颗粒-双联液桥-液膜体系描述的Voronoi胞元模型,利用由模型获得的非饱和颗粒材料表征元中水力-力学介观结构和响应信息,文章定义了低饱和度多孔介质局部材料点的有效内状态变量:非饱和多孔连续体的广义Biot有效应力和有效压力,导出了其表达式.所导出的有效压力公式表明,非饱和多孔连续体的有效压力张量为各向异性,它不仅对非饱和多孔连续体广义Biot有效应力张量的静水应力分量的影响呈各向异性,同时也对其剪切应力分量有影响.文章表明,非饱和多孔连续体中提出的广义Biot理论和双变量理论的基本缺陷在于它们均假定反映非混和两相孔隙流体对固相骨架水力-力学效应的有效压力张量为各向同性.此外,为定义各向同性有效压力张量和作为加权系数而引入的Bishop参数并不包含对非饱和多孔连续体中局部材料点水力-力学响应具有十分重要效应的基质吸力.所导出的非饱和多孔介质广义Biot有效应力和有效压力公式(包括反映有效压力...  相似文献   

16.
混凝土单轴受拉的非局部本构模型   总被引:1,自引:0,他引:1  
混凝土受拉本构行为存在很强的局部软化现象,使得单轴受拉试验无法给出应力-应变关系,而只能给出应力-位移关系。本文根据内变量理论和等效应变假设建立了基于真实应变的混凝土单轴受力本构方程,并根据Weibull分布可以描述混凝土等脆性材料断裂过程的试验现象,建立了关于弹性应变的损伤演化规律。然后,通过假设平均应变与真实弹性应变的函数关系,在应力-平均应变的本构关系中采用平均弹性应变以描述其非局部行为,而在材料的损伤演化规律中采用真实弹性应变以描述其局部行为,由此建立了单轴受拉荷载条件下的非局部本构模型。最后,对一个单调受拉试验和一个反复受拉试验的仿真结果表明所提出的非局部本构模型可以准确地模拟试验结果。  相似文献   

17.
This study develops a thermodynamically consistent large-deformation theory of strain-gradient viscoplasticity for isotropic materials based on: (i) a scalar and a vector microstress consistent with a microforce balance; (ii) a mechanical version of the two laws of thermodynamics for isothermal conditions, that includes via the microstresses the work performed during viscoplastic flow; and (iii) a constitutive theory that allows:  相似文献   

18.
In this paper, we are interested in developing thermodynamically consistent constitutive equations for fiber-reinforced nonlinearly viscoelastic bodies, in particular for transversely isotropic nonlinearly viscoelastic solids, in isothermal processes. It follows from results in the theory of algebraic invariants that constitutive equations for such materials can be expressed in terms of functions of 18 independent invariants associated with deformation and fiber orientation: 10 of them are isotropic invariants and 8 of them are associated with the deformation and the orientation of the fiber. Among the 8 anisotropic invariants just 6 are related to the viscoelastic response. The terms in the Cauchy stress tensor associated to these 6 invariants are analyzed with respect to thermodynamical consistency, and we obtain restrictions for the corresponding constitutive coefficients. This framework is applied to viscoelastic potentials within the context of biomaterials.  相似文献   

19.
This paper presents an elastoplastic model for unsaturated rocks and concrete. The formulation is based on the poroplastic theory of porous media. The effect of water saturation on plastic deformation is described through a generalised effective stress. Plastic shrinkage and swelling due to suction change are taken into account. All model’s parameters can be determined from specific laboratory tests. Comparisons between numerical simulations and experimental data are provided for a claystone.  相似文献   

20.
A non-local isotropic damage model is proposed which can be used to predict the behaviour of rock-like materials up to failure. Two isotropic damage variables account for the progressive degradation of mechanical properties under stress states of prevailing tension and compression and two internal lengths, one for tension and the other for compression, are introduced as localisation limiters. A linear bifurcation analysis highlights the regularisation properties of the non-local model. An iterative scheme for the numerical solution of the finite-step problem consisting of a linear global predictor, an averaging phase and a non-linear local corrector is presented. Some illustrative examples of tension and splitting tests show the effectiveness of the proposed model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号