首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Approximate expressions for the macroscopic out-of-plane elastic coefficients of brick masonry with a regular pattern are derived in closed form using a homogenization approach for periodic media. Following an approach similar to the Method of Cells for fiber reinforced composites, a (piecewise-)differentiable expression depending on very a limited number of degrees of freedom and fulfilling suitable periodicity conditions is proposed for the microscopic transverse displacement field over any Representative Volume Element (RVE). Some of the equilibrium conditions at the interfaces between bricks and mortar joints are also fulfilled. By averaging the moment and curvature fields over the RVE, the macroscopic bending stiffness coefficients can be explicitly obtained. Using the FE solution of a masonry panel subjected to elementary load conditions as a benchmark, the proposed approach is found to accurately match the numerically obtained stiffness coefficients, for masonry elements of different geometry and different mechanical properties. In several instances, the proposed expressions agree with the numerical predictions better than other analytical expressions available in the literature.  相似文献   

2.
In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.  相似文献   

3.
Two-wythes masonry walls arranged in English bond texture were often used in the past as bearing panels in seismic area. On the other hand, earthquake surveys have demonstrated that masonry strength under horizontal actions is usually insufficient, causing premature collapses of masonry buildings, often ascribed to out-of-plane actions. Furthermore, many codes of practice impose for new brickwork walls a minimal slenderness, which for instance is fixed by the Italian O.P.C.M. 3431 equal to 12 for artificial bricks and 10 for natural blocks masonry.For the above reasons, the analysis at failure of English bond brickwork walls under out-of-plane actions is a topic that deserves consideration, despite the fact that almost the totality of the studies of masonry at failure is devoted to running bond arrangements. Furthermore, it must be noted that an approach based on the analysis of running bond texture – in comparison with English bond pattern – is not suitable for the investigation of the behavior of bearing panels.In this framework, in the present paper, a Reissner–Mindlin kinematic limit analysis approach is presented for the derivation of the macroscopic failure surfaces of two-wythes masonry arranged in English bond texture. In particular, the behavior of a 3D system constituted by infinitely resistant bricks connected by joints reduced to interfaces with frictional behavior and limited tensile/compressive strength is identified with a 2D Reissner–Mindlin plate. In this way, assuming both an associated flow rule for the constituent materials and a finite subclass of possible deformation modes, an upper bound approximation of macroscopic English bond masonry failure surfaces is obtained as a function of macroscopic bending moments, torsion and shear forces.Several examples of technical relevance are treated both at a cell level and at a structural level, addressing the differences in terms of collapse loads and failure surfaces due to different textures and constituent laws for joints. Finally, two meaningful structural examples consisting of a panel in cylindrical flexion and a masonry slab constrained at three edges and out-of-plane loaded are discussed. A detailed comparison in terms of deformed shapes at collapse and failure loads between a 2D FE Reissner–Mindlin limit analysis approach and a full 3D heterogeneous FE model shows the reliability of the results obtained using the kinematic identification approach proposed.  相似文献   

4.
A simplified kinematic procedure at a cell level is proposed to obtain in-plane elastic moduli and macroscopic masonry strength domains in the case of herringbone masonry. The model is constituted by two central bricks interacting with their neighbors by means of either elastic or rigid-plastic interfaces with friction, representing mortar joints. The herringbone pattern is geometrically described and the internal law of composition of the periodic cell is defined.A sub-class of possible elementary deformations is a-priori chosen to describe joints cracking under in-plane loads. Suitable internal macroscopic actions are applied on the Representative Element of Volume (REV) and the power expended within the 3D bricks assemblage is equated to that expended in the macroscopic 2D Cauchy continuum. The elastic and limit analysis problem at a cell level are solved by means of a quadratic and linear programming approach, respectively.To assess elastic results, a standard FEM homogenization is also performed and a sensitivity analysis regarding two different orientations of the pattern, the thickness of the mortar joints and the ratio between block and mortar Young moduli is conducted. In this way, the reliability of the numerical model is critically evaluated under service loads.When dealing with the limit analysis approach, several computations are performed investigating the role played by (1) the direction of the load with respect to herringbone bond orientation, (2) masonry texture and (3) mechanical properties adopted for joints.At a structural level, a FE homogenized limit analysis is performed on a masonry dome built in herringbone bond. In order to assess limit analysis results, additional non-linear FE analyses are performed, including a full 3D numerical expensive heterogeneous approach and models where masonry is substituted with an equivalent macroscopic material with orthotropic behavior and possible softening. Reliable predictions of collapse loads and failure mechanisms are obtained, meaning that the approach proposed may be used by practitioners for a fast evaluation of the effectiveness of herringbone bond orientation.  相似文献   

5.
In this paper a homogenization procedure for the estimation of the failure surface of a quasi-periodic masonry, based on a mean stresses approach through the analysis of the Statistically Equivalent Periodic Unit Cell (SEPUC), is shown. The mean stresses approach consists in the identification of critical states for the homogenized continuum by means of an overall failure criterion, function of the mean stress state of each constituent. These macroscopic tensors are evaluated in the elastic field. The SEPUC definition refers to a statistical criterion applied to a population of Periodic Unit Cells generated taking into account the geometrical features of the quasi-periodic texture; moreover it is validated on the basis of the homogenized elastic properties in terms of components and Frobenius norm of the elastic matrix. By a multi-objective optimization approach, the obtained results highlight that the proposed SEPUC can be used to estimate the failure surface.  相似文献   

6.
The stress analysis of pressurized circumferential pipe weldments under steady state creep is considered. The creep response of the material is governed by Norton’s law. Numerical and analytical solutions are obtained by means of perturbation method, the unperturbed solution corresponds to the stress field in a homogeneous pipe. The correction terms are treated as stresses defined with the help of an auxiliary linear elastic problem. Exact expressions for jumps of hoop and radial stresses at the interface are obtained. The proposed technique essentially simplifies parametric analysis of multi-material components.  相似文献   

7.
A simple rigid-plastic homogenization model for the analysis of masonry structures subjected to out-of-plane impact loads is presented. The objective is to propose a model characterized by a few material parameters, numerically inexpensive and very stable. Bricks and mortar joints are assumed rigid perfectly plastic and obeying an associated flow rule. In order to take into account the effect of brickwork texture, out-of-plane anisotropic masonry failure surfaces are obtained by means of a limit analysis approach, in which the unit cell is sub-divided into a fixed number of sub-domains and layers along the thickness. A polynomial representation of micro-stress tensor components is utilized inside each sub-domain, assuring both stress tensor admissibility on a regular grid of points and continuity of the stress vector at the interfaces between contiguous sub-domains. Limited strength (frictional failure with compressive cap and tension cut-off) of brick-mortar interfaces is also considered in the model, thus allowing the reproduction of elementary cell failures due to the possible insufficient resistance of the bond between units and joints.Triangular Kirchhoff-Love elements with linear interpolation of the displacement field and constant moment within each element are used at a structural level. In this framework, a simple quadratic programming problem is obtained to analyze entire walls subjected to impacts.In order to test the capabilities of the approach proposed, two examples of technical interest are discussed, namely a running bond masonry wall constrained at three edges and subjected to a point impact load and a masonry square plate constrained at four edges and subjected to a distributed dynamic pressure simulating an air-blast. Only for the first example, numerical and experimental data are available, whereas for the second example insufficient information is at disposal from the literature. Comparisons with standard elastic–plastic procedures conducted by means of commercial FE codes are also provided. Despite the obvious approximations and limitations connected to the utilization of a rigid-plastic model for masonry, the approach proposed seems able to provide results in agreement with alternative expensive numerical elasto-plastic approaches, but requiring only negligible processing time. Therefore, the proposed simple tool can be used (in addition to more sophisticated but expensive non-linear procedures) by practitioners to have a fast estimation of masonry behavior subjected to impact.  相似文献   

8.
在细观尺度上建立能反映材料微观组织结构又能反映统计意义上宏观力学性能的代表性体积单元(Representative Volume Element, RVE),对其进行复杂加载下的数值研究,是目前预测材料宏观力学性能较有效的方法。本文从理论上分析并提供了对正六面体RVE在任意应力状态及任意应力路径下加载及宏观应力、应变计算的方法,用有限元软件ABAQUS实现了数值计算过程,并用此方法对循环加载下缺口圆棒颈部中心和边缘位置进行了RVE分析。结果表明:(1)此方法能准确的控制并实现正六面体RVE在任意应力状态及应力状态路径下加载;(2)通过RVE分析,可用于复杂加载下试样局部细观结构变化的研究。  相似文献   

9.
10.
We use a computational homogenisation approach to derive a non linear constitutive model for lattice materials. A representative volume element (RVE) of the lattice is modelled by means of discrete structural elements, and macroscopic stress–strain relationships are numerically evaluated after applying appropriate periodic boundary conditions to the RVE. The influence of the choice of the RVE on the predictions of the model is discussed. The model has been used for the analysis of the hexagonal and the triangulated lattices subjected to large strains. The fidelity of the model has been demonstrated by analysing a plate with a central hole under prescribed in plane compressive and tensile loads, and then comparing the results from the discrete and the homogenised models.  相似文献   

11.
A remarkably simple analytical expression for the sensitivity of the two-dimensional macroscopic elasticity tensor to topological microstructural changes of the underlying material is proposed. The derivation of the proposed formula relies on the concept of topological derivative, applied within a variational multi-scale constitutive framework where the macroscopic strain and stress at each point of the macroscopic continuum are volume averages of their microscopic counterparts over a representative volume element (RVE) of material associated with that point. The derived sensitivity—a symmetric fourth order tensor field over the RVE domain—measures how the estimated two-dimensional macroscopic elasticity tensor changes when a small circular hole is introduced at the microscale level. This information has potential use in the design and optimisation of microstructures.  相似文献   

12.
In the present paper, the homogenized mechanical response of an interface in a microsystem interconnection is established on the basis of micropolar theory. The interface is treated as a finite RVE (representative volume element), across which macroscopic discontinuities occur as expressed in terms of the regularized discontinuous displacement and rotation fields. For the microstructure within the interfacial RVE, the micro-macro kinematical coupling is introduced as a second-order Taylor series expansion, along with a fluctuation term representing the microscopic displacement variation. In the second-order term of the expansion a restriction for the curvature is made, which motivates the adopted micropolar kinematics. Explicit expressions for the homogenized traction vector and the couple stress traction, associated with displacement and rotational jumps across the interface surface, are derived. A planar elastic interface is subjected to three basic deformation modes, i.e. the standard modes I, II and a non-conventional rotation mode, which are considered in the numerical examples representing a typical interconnect. A comparison to the results from the Taylor assumption is made, which shows that the Taylor assumption method produces an overstiffening of the interface.  相似文献   

13.
A linear viscous model for evaluating the stresses and strains produced in masonry structures over time is presented. The model is based on rigorous homogenization procedures and the following two assumptions: that the structure is composed of either rigid or elastic blocks, and that the mortar is viscoelastic. The hypothesis of rigid block is particularly suitable for historical masonry, in which stone blocks may be assumed as rigid bodies, while the hypothesis of elastic blocks may be assumed for newly constructed brickwork structures. The hypothesis of viscoelastic mortar is based on the observation that non-linear phenomena may be concentrated in mortar joints. Under these assumptions, constitutive homogenized viscous functions are obtained in an analytical form.Some meaningful cases are discussed: masonry columns subject to minor and major eccentricity, and a masonry panel subject to both horizontal and vertical loads. The major eccentricity case is analysed taking into account both the effect of viscosity and the no-tension hypothesis, whereas the bi-dimensional loading case is analysed to verify the sensitivity of masonry behaviour to viscous function. In the masonry wall considered, the principal stresses are both of compression, and the no-tension assumption may therefore be discounted.  相似文献   

14.
A model is proposed for averaging a periodic block structure, namely, a growing brick masonry body with setting interlayers of bonding mortar. The brick (block) material is assumed to be elastic, and the setting mortar is described by the model of an inhomogeneously aging viscoelastic medium. The obtained system of constitutive relations describes an anisotropic inhomogeneously aging viscoelastic medium and contains a small parameter that is the ratio of the hardening interlayer thickness to the brick thickness. Also presented is an example of solving the problem of erecting a brickwork (wall) deviating from the vertical in the gravity field.  相似文献   

15.
The aim of this paper is to study non-periodic masonries – typical of historical buildings – by means of a perturbation approach and to evaluate the effect of a random perturbation on the elastic response of a periodic masonry wall. The random masonry is obtained starting from a periodic running bond pattern. A random perturbation on the horizontal positions of the vertical interfaces between the blocks which form the masonry wall is introduced. In this way, the height of the blocks is uniform, while their width in the horizontal direction is random. The perturbation is limited such as each block has still exactly 6 neighboring blocks. In a first discrete model, the blocks are modeled as rigid bodies connected by elastic interfaces (mortar thin joints). In other words, masonry is seen as a “skeleton” in which the interactions between the rigid blocks are represented by forces and moments which depend on their relative displacements and rotations. A second continuous model is based on the homogenization of the discrete model. Explicit upper and lower bounds on the effective elastic moduli of the homogenized continuous model are obtained and compared to the well-known effective elastic moduli of the regular periodic masonry. It is found that the effective moduli are not very sensitive to the random perturbation (less than 10%). At the end, the Monte Carlo simulation method is used to compare the discrete random model and the continuous model at the structural level (a panel undergoing in plane actions). The randomness of the geometry requires the generation of several samples of size L of the discrete masonry. For a sample of size L, the structural discrete problem is solved using the same numerical procedure adopted in [Cecchi, A., Sab, K., 2004. A comparison between a 3D discrete model and two homogenized plate models for periodic elastic brickwork, International Journal of Solids Structures 41 (9–10), 2259–2276] and the average solution over the samples gives an estimation which depends on L. As L increases, an asymptotic limit is reached. One issue is to find the minimum size for L and to compare the asymptotic average solution to the one obtained from the continuous homogenized model.  相似文献   

16.
A homogenization theory for time-dependent deformation such as creep andviscoplasticity of nonlinear composites with periodic internal structures is developed. To beginwith, in the macroscopically uniform case, a rate-type macroscopic constitutive relation betweenstress and strain and an evolution equation of microscopic stress are derived by introducing twokinds of Y-periodic functions, which are determined by solving two unit cell problems.Then, the macroscopically nonuniform case is discussed in an incremental form using thetwo-scale asymptotic expansion of field variables. The resulting equations are shown to beeffective for computing incrementally the time-dependent deformation for which the history ofeither macroscopic stress or macroscopic strain is prescribed. As an application of the theory,transverse creep of metal matrix composites reinforced undirectionally with continuous fibers isanalyzed numerically to discuss the effect of fiber arrays on the anisotropy in such creep.  相似文献   

17.
王增会  李锡夔 《力学学报》2018,50(2):284-296
本文在二阶计算均匀化框架下提出了颗粒材料损伤--愈合与塑性的多尺度表征方法. 颗粒材料结构在宏观尺度模型化为梯度Cosserat连续体,在其有限元网格的每个积分点处定义具有离散颗粒介观结构的表征元. 建立了表征元离散颗粒系统的非线性增量本构关系. 表征元周边介质作用于表征元边界颗粒的增量力与增量力偶矩以表征元边界颗粒的增量线位移与增量转动角位移、当前变形状态下表征元离散介观结构弹性刚度、以及凝聚到表征元边界颗粒的增量耗散摩擦力表示. 基于平均场理论与Hill定理,导出了基于介观力学信息的梯度Cosserat连续体增量非线性本构关系. 在等温热动力学框架下定义了表征颗粒材料各向异性损伤--愈合和塑性的损伤、愈合张量因子与综合损伤、愈合效应的净损伤张量因子和塑性应变. 此外,定义了损伤和塑性耗散能密度与愈合能密度,以定量比较材料损伤、愈合、塑性对材料失效的效应. 应变局部化数值例题结果显示了所建议的颗粒材料损伤--愈合--塑性表征方法的有效性.   相似文献   

18.
The load-bearing capacity of ductile composite structures comprised of periodic composites is studied by a combined micro/macromechanicai approach. Firstly, on the microscopic level, a representative volume element (RVE) is selected to reflect the microstructures of the composite materials and the constituents are assumed to be elastic perfectly-plastic. Based on the homogenization theory and the static limit theorem, an optimization formulation to directly calculate the macroscopic strength domain of the RVE is obtained. The finite element modeling of the static limit analysis is formulated as a nonlinear mathematical programming and solved by the sequential quadratic programming method, where the temperature parameter method is used to construct the self-stress field. Secondly, Hill's yield criterion is adopted to connect the micromechanicai and macromechanical analyses. And the limit loads of composite structures are worked out on the macroscopic scale. Finally, some examples and comparisons are shown.  相似文献   

19.
A multi-scale model for the structural analysis of the in-plane response of masonry panels, characterized by periodic arrangement of bricks and mortar, is presented. The model is based on the use of two scales: at the macroscopic level the Cosserat micropolar continuum is adopted, while at the microscopic scale the classical Cauchy medium is employed. A nonlinear constitutive law is introduced at the microscopic level, which includes damage, friction, crushing and unilateral contact effects for the mortar joints. The nonlinear homogenization is performed employing the Transformation Field Analysis (TFA) technique, properly extended to the macroscopic Cosserat continuum. A numerical procedure is developed and implemented in a Finite Element (FE) code in order to analyze some interesting structural problems. In particular, four numerical applications are presented: the first one analyzes the response of the masonry Representative Volume Element (RVE) subjected to a cyclic loading history; in the other three applications, a comparison between the numerically evaluated response and the micromechanical or experimental one is performed for some masonry panels.  相似文献   

20.
In this paper the equilibrium problem for masonry arches is formulated in terms of a suitable set of nonlinear ordinary differential equations. We show that by making a small number of simple hypotheses it is possible to find the explicit expressions for the displacements and rotations of the cross-sections of an in-plane loaded masonry arch. To this end, the masonry arch is schematised as a curved, one-dimensional nonlinear elastic beam made of a material that is by hypothesis incapable of withstanding significant tensile stresses. In this first part of the two-part paper, the one-dimensional model and the explicit expressions for the displacements and rotations, obtained by integrating the set of differential equations, are presented. In particular, the formal expressions for displacement, stress and strain fields are illustrated in full detail for an explicit, albeit approximate, solution for a statically determinate depressed arch subjected to a uniform vertical load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号