首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The piezoelectric composites with a doubly periodic parallelogrammic array of piezoelectric fibers are dealt with under antiplane shear coupled with inplane electrical load. A rigorous analytical method is developed by using the doubly quasi-periodic Riemann boundary value problem theory integrated with the eigenstrain and eigen-electrical-field concepts. The numerical results are presented and a comparison with finite element calculations, experimental data and micromechanical analysis is made to demonstrate the efficiency and accuracy of the present method. Subsequently, the present solutions are used to study two important topics in piezoelectric fiber composites, i.e., (1) stress and electrical field fluctuations in the microstructure, (2) the macroscopic effective electroelastic moduli. The relation between the macroscopic properties of the composites and their microstructural parameters is discussed and many interesting electroelastic interaction phenomena are revealed, which are useful to estimate and optimize the performance of piezoelectric composites.  相似文献   

2.
单向纤维增强复合材料中纤维断裂及其发展   总被引:1,自引:0,他引:1  
茅人杰  孙国钧 《力学季刊》1997,18(2):160-168
纤维增强复合材料中某根纤维断裂后,断口作为裂纹向何处发展?它可以向纤维和基体的界面发展形成界面脱粘,也可向基体发展,造成基体开展,从而殃及邻近纤维。另外,一根纤维的断裂会在其邻近纤维中造成应力集中。本文采取轴对称边界元法对这些问题进行仔细研究。本文假定纤维在基体中成六角形分布,即每根纤维周围有六根纤维,均匀地分布在以该纤维为中心的圆周上。  相似文献   

3.
A micromechanics-based constitutive relation for void growth in a nonlinear viscous solid is proposed to study rate effects on fracture toughness. This relation is incorporated into a microporous strip of cell elements embedded in a computational model for crack growth. The microporous strip is surrounded by an elastic nonlinear viscous solid referred to as the background material. Under steady-state crack growth, two dissipative processes contribute to the macroscopic fracture toughness—the work of separation in the strip of cell elements and energy dissipation by inelastic deformation in the background material. As the crack velocity increases, voids grow in the strain-rate strengthened microporous strip, thereby elevating the work of separation. In contrast, the energy dissipation in the background material decreases as the crack velocity increases. In the regime where the work of separation dominates energy dissipation, toughness increases with crack velocity. In the regime where energy dissipation is dominant, toughness decreases with crack velocity. Computational simulations show that the two regimes can exist in certain range of crack velocities for a given material. The existence of these regimes is greatly influenced by the rate dependence of the void growth mechanism (and the initial void size) as well as that of the bulk material. This competition between the two dissipative processes produces a U-shaped toughness-crack velocity curve. Our computational simulations predict trends that agree with fracture toughness vs. crack velocity data reported in several experimental studies for glassy polymers and rubber-modified epoxies.  相似文献   

4.
双周期圆截面纤维复合材料平面问题的解析法   总被引:4,自引:0,他引:4  
徐耀玲  蒋持平 《力学学报》2004,36(5):596-603
结合双准周期Riemann边值问题理论与Eshelby等效夹杂原理,为双周期圆截面纤维复合材 料平面问题发展了一个实用有效的解析方法,获得了问题的全场级数解并与有限元结果进行 了比较. 该方法为非均匀材料的力学性质分析和复合材料等新材料的微结构设计提供了 一个有效的计算工具,也可用来评估有限元等数值与近似方法的精度.  相似文献   

5.
A general micromechanical method is developed for a micropolar composite with ellipsoidal fibers, where the matrix material is idealized as a micropolar material model. The method is based on a special micro–macro transition method, and the classical effective moduli for micropolar composites can be determined in an analytical way. The influence of both fiber’s shape and size can be analyzed by the proposed method. The effective moduli, initial yield surface and effective nonlinear stress and strain relation for a micropolar composite reinforced by ellipsoidal fibers are examined, it is found that the prediction on the effective moduli and effective nonlinear stress and strain curves are always higher than those based on classical Cauchy material model, especially for the case where the size of fiber approaches to the characteristic length of matrix material. As expected, when the size of fiber is sufficiently large, the classical results (size-independence) can be recovered.  相似文献   

6.
This work presents a combined numerical and theoretical study of the effective behavior and statistics of the local fields in random viscoplastic composites. The full-field numerical simulations are based on the fast Fourier transform (FFT) algorithm [Moulinec, H., Suquet, P., 1994. A fast numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci. Paris II 318, 1417-1423], while the theoretical estimates follow from the so-called “second-order” procedure [Ponte Castañeda, P., 2002a. Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—Theory. J. Mech. Phys. Solids 50, 737-757]. Two-phase fiber composites with power-law phases are considered in detail, for two different heterogeneity contrasts corresponding to fiber-reinforced and fiber-weakened composites. Both the FFT simulations and the corresponding “second-order” estimates show that the strain-rate fluctuations in these systems increase significantly, becoming progressively more anisotropic, with increasing nonlinearity. In fact, the strain-rate fluctuations tend to become unbounded in the limiting case of ideally plastic composites. This phenomenon is shown to correspond to the localization of the strain field into bands running through the composite along certain preferred orientations determined by the loading conditions. The bands tend to avoid the fibers when they are stronger than the matrix, and to pass through the fibers when they are weaker than the matrix. In general, the “second-order” estimates are found to be in good agreement with the FFT simulations, even for high nonlinearities, and they improve, often in qualitative terms, on earlier nonlinear homogenization estimates. Thus, it is demonstrated that the “second-order” method can be used to extract accurate information not only for the macroscopic behavior, but also for the anisotropic distribution of the local fields in nonlinear composites.  相似文献   

7.
Dislocation interaction with a cohesive crack is of increasing importance to computational modelling of crack nucleation/growth and related toughening mechanisms in confined structures and under cyclic fatigue conditions. Here, dislocation shielding of a Dugdale cohesive crack described by a rectangular traction-separation law is studied. The shielding is completely characterized by three non-dimensional parameters representing the effective fracture toughness, the cohesive strength, and the distance between the dislocations and the crack tip. A closed form analytical solution shows that, while the classical singular crack model predicts that a dislocation can shield or anti-shield a crack depending on the sign of its Burgers vector, at low cohesive strengths a dislocation always shields the cohesive crack irrespective of the Burgers vector. A numerical study shows the transition in shielding from the classical solution of Lin and Thomson (1986) in the high strength limit to the solution in the low strength limit. An asymptotic analysis yields an approximate analytical model for the shielding over the full range of cohesive strengths. A discrete dislocation (DD) simulation of a large (>103) number of edge dislocations interacting with a cohesive crack described by a trapezoidal traction-separation law confirms the transition in shielding, showing that the cohesive crack does behave like a singular crack at very high cohesive strengths (∼7 GPa), but that significant deviations in shielding between singular and cohesive crack predictions arise at cohesive strengths around 1GPa, consistent with the analytic models. Both analytical and numerical studies indicate that an appropriate crack tip model is essential for accurately quantifying dislocation shielding for cohesive strengths in the GPa range.  相似文献   

8.
The solution of the strain energy change of an infinite matrix due to the presence of one spherical particle or cylindrical fiber surrounded by an inhomogeneous interphase is the basis of solving effective elastic moduli of corresponding composites based on various micromechanics models. In order to find out the strain energy change, the composite sphere or cylinder, i.e., the spherical particle or cylindrical fiber together with its interphase, is replaced by an effective homogeneous particle or fiber. Independent governing differential equations for each modulus of the effective particle or fiber are derived by extending the replacement method [J. Mech. Phys. Solids 12 (1964) 199]. As far as the strain energy changes of the infinite matrix subjected to various far-field stress systems are concerned, the present model is simple. Meanwhile, FEM analysis is carried out for a verification, which shows that the model can lead to rather accurate results for most practical interphases. Besides, to check the validity of the model further when the interactions among composite cylinders exist, the two problems of an infinite matrix containing two composite cylinders and the effective moduli of composites with the equilateral triangular distribution of composite cylinders are analyzed using FEM. The FEM results show that the model is still rather accurate, especially for the case of interphase properties varying between those of fiber and matrix. Therefore, composite spheres or cylinders are assumed as the effective homogeneous particles or fibers and simple expressions of the effective moduli of composites containing the composite spheres or cylinders are obtained. Furthermore, the present model is compared with some existing models that are based on very complicated derivations.  相似文献   

9.
Two families of finite element models of anisotropic, aluminum alloy, open-cell foams are developed and their predictions of elastic properties and compressive strength are evaluated by direct comparison to experimental results. In the first family of models, the foams are idealized as anisotropic Kelvin cells loaded in the <100> direction and in the second family more realistic models, based on Surface Evolver simulations of random soap froth with N3 cells are constructed. In both cases the ligaments are straight but have nonuniform cross sectional area distributions that resemble those of the foams tested. The ligaments are modeled as shear deformable beams with elasto-plastic material behavior. The calculated compressive response starts with a linearly elastic regime. At higher stress levels, inelastic action causes a gradual reduction of the stiffness that eventually leads to a stress maximum, which represents the strength of the material. The periodicity of the Kelvin cell enables calculation of the compressive response up to the limit stress with just a single fully periodic characteristic cell. Beyond the limit stress, deformation localizes along the principal diagonals of the microstructure. Consequently beyond the limit stress the response is evaluated using finite size 3-D domains that allow the localization to develop. The random models consist of 3-D domains of 216, 512 or 1000 cells with periodicity conditions on the compressed ends but free on the sides. The compressive response is also characterized by a limit load instability but now the localization is disorganized resembling that observed in experiments. The foam elastic moduli and strengths obtained from both families of models are generally in very good agreement with the corresponding measurements. The random foam models yield 5–10% stiffer elastic moduli and slightly higher strengths than the Kelvin cell models. Necessary requirements for this high performance of the models are accurate representation of the material distribution in the ligaments and correct modeling of the nonlinear stress–strain response of the aluminum base material.  相似文献   

10.
The dynamic behavior of a circular crack in an elastic composite consisting of two dissimilar half-spaces connected by a thin compliant interlayer is studied. One half-space contains a defect aligned perpendicular to the interlayer; the defect surfaces are loaded by normal harmonic forces, which ensures the symmetry of the stress-strain state. The thin interlayer is modeled by conditions of a nonideal contact of the half-spaces. The problem is reduced to a boundary integral equation with respect to the function of dynamic opening of the defect. The numerical solution of this equation yields frequency dependences of the mode I stress intensity factor in the vicinity of the crack for different values of interlayer thickness and relations between the moduli of elasticity of the composite components. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 197–207, May–June, 2008.  相似文献   

11.
This study sheds light on the small-scale interaction of a three-dimensional matrix crack with a fiber. The experiments with a model brittle-matrix/brittle-fiber system record the three-dimensional growth history of an initially penny-shaped fracture which quasi-statically propagates toward and around a cylindrical inclusion. Crack growth histories are obtained by hydraulically fracturing a cement matrix with embedded glass rods. These experimentally determined crack patterns support micromechanical computational simulations which were conducted using a three-dimensional surface integral method. The implications for tailoring interfacial friction to increase the crack resistance of brittle materials (e.g., ceramic matrix/ceramic fiber composites) are discussed.  相似文献   

12.
Macroscopic instabilities of fiber reinforced composites undergoing large deformations are studied. Analytical predictions for the onset of instability are determined by application of a new variational estimate for the behavior of hyperelastic composites. The resulting, closed-form expressions, are compared with corresponding predictions of finite element simulations. The simulations are performed with 3-D models of periodic composites with hexagonal unit cell subjected to compression along the fibers as well as to non-aligned compression. Throughout, the analytical predictions for the failures of neo-Hookean and Gent composites are in agreement with the numerical simulations. It is found that the critical stretch ratio for Gent composites is close to the one determined for neo-Hookean composites with similar volume fractions and contrasts between the phases properties. During non-aligned compression the fibers rotate and hence, for some loading directions, the compression along the fibers never reaches the level at which loss of stability may occur.  相似文献   

13.
A method for predicting the elastic moduli of a regular network populated by a large number of randomly located defects is presented. The prediction is based exclusively on the stiffness of individual fibers and the location of defects. The method requires a preliminary calibration step in which the eigenstrains associated with “elementary defects” of the regular network are fully characterized. Each type of defect is represented by a superposition of singular point sources in 2D elastostatics producing a field identical to the eigenstrain of the respective defect. The amplitude of the point sources is determined by probing the eigenstrain with a series of path independent integrals. This “spectral decomposition” represents the generalization that allows applying methods developed to account for crack–crack interaction in fracture mechanics to situations in which the interacting sources have eigenstrains obtained by the superposition of multiple types of singularities. Once the representation of each elementary defect is determined, any distribution of defects in the network can be mapped into a distribution of point sources in an equivalent continuum. This allows inferring the elastic behavior of a defective network of any distribution and concentration of defects. The method discussed here provides an efficient way to treat the non-affine deformation of defective regular fiber networks.  相似文献   

14.
A fast convergent numerical model is developed to calculate the effective moduli of plates with various distributions and sizes of cracks, in which the crack line is divided into M parts to obtain the unknown traction on the crack line. When M=1, the model reduces to Kachanov's approximation method [Int. J. Solids Struct. 23 (1987) 23]. Six types of crack distributions and three kinds of crack sizes are considered, which are four regular (equilateral triangle, equilateral hexagon, rectangle, and diamond) and two random distributions (random location and orientation, and parallel orientation and random location), and one, two and random crack sizes. Some typical examples are also analyzed using the finite element method (FEM) to validate the present model. Then, the effective moduli associated with the crack distributions and sizes are calculated in detail. The present results for the regular distributions show some very interesting phenomena that have not been revealed before. And for the two random distributions, as the effective moduli depend on samples due to the randomness, the effect of the sample size and number are analyzed first. Then, effective moduli for plates with the three sizes of cracks are calculated. It is found that the effect of crack sizes on the effective moduli is significant for high crack densities, and small for low crack densities, and the random crack size leads to the lowest effective moduli. The present numerical results are compared with several popular micromechanics models to determine which one can provide the optimum estimation of the effective moduli of cracked plates with general crack densities. Furthermore, some existing numerical results are analyzed and discussed.  相似文献   

15.
We perform two-dimensional dynamic fracture simulations of a specimen in biaxial tension, incorporating various distributions of pre-existing microcracks. The simulations consider the spatial distribution of flaws while modeling the discrete failure processes of crack interactions and coalescence, and predict the macroscopic variability in failure strength. The model quantitatively predicts the effect (on the dynamic failure strength) of different shapes of the flaw size distribution function, the random spatial distribution of flaws, and the random local resistance to crack growth (i.e. strength) associated with each flaw. The effect of changing material volumes on the variability in failure strengths is also examined in relation to the flaw size distribution. The effect of loading rate on the variability in failure strengths is presented in a form that will enable improved constitutive modeling using non-local formulations at the continuum scale.  相似文献   

16.
Using the slender inclusion model developed earlier the elastostatic interaction problem between a penny-shaped crack and elastic fibers in an elastic matrix is formulated. For a single set and for multiple sets of fibers oriented perpendicularly to the plane of the crack and distributed symmetrically on concentric circles the problem is reduced to a system of singular integral equations. Techniques for the regularization and for the numerical solution of the system are outlined. For various fiber geometries numerical examples are given and distribution of the stress intensity factor along the crack border is obtained. Sample results showing the distribution of the fiber stress and a measure of the fiber-matrix interface shear are also included.  相似文献   

17.
将均匀化理论应用于具有非完全(单层内)周期性微结构的倒装焊底充胶电子封装元件,建立了高阶逐层离散层板模型,用解析法分析热载荷下结构的温度应力. 计算结果与有限元解的比较表明,该分析模型和方法是有效的,而且比较简便. 算例分析结果显示,胶层厚度、焊点密度、胶与焊点材料的模量比和体积比,对于焊点温度应力有明显影响.  相似文献   

18.
Dynamic toughness in elastic nonlinear viscous solids   总被引:1,自引:0,他引:1  
This work addresses the interrelationship among dissipative mechanisms—material separation in the fracture process zone (FPZ), nonelastic deformation in the surrounding background material and kinetic energy—and how they affect the macroscopic dynamic fracture toughness as well as the limiting crack speed in strain rate sensitive materials. To this end, a micromechanics-based model for void growth in a nonlinear viscous solid is incorporated into a microporous strip of cell elements that forms the FPZ. The latter is surrounded by background material described by conventional constitutive relations. In the first part of the paper, the background material is assumed to be purely elastic. Here, the computed dynamic fracture toughness is a convex function of crack velocity. In the second part, the background material as well as the FPZ are described by similar rate-sensitivity parameters. Voids grow in the strain rate strengthened FPZ as the crack velocity increases. Consequently, the work of separation increases. By contrast, the inelastic dissipation in the background material appears to be a concave function of crack velocity. At the lower crack velocity regime, where dissipation in the background material is dominant, toughness decreases as crack velocity increases. At high crack velocities, inelastic deformation enhanced by the inertial force can cause a sharp increase in toughness. Here, the computed toughness increases rapidly with crack velocity. There exist regimes where the toughness is a non-monotonic function of the crack velocity. Two length scales—the width of the FPZ and the ratio of the shear wave speed to the reference strain rate—can be shown to strongly affect the dynamic fracture toughness. Our computational simulations can predict experimental data for fracture toughness vs. crack velocity reported in several studies for amorphous polymeric materials.  相似文献   

19.
The integral equations of the scattering problem for piezoelectric–piezomagnetic composites with an inhomogeneity are derived. In the long-wave limit, the solutions of these integral equations for the composites containing a single inhomogeneous fiber are solved in close forms. The total scattering cross-section for the one-fiber composites is also obtained. By the so-called effective field method, the multi-fiber scattering problem is simplified to the one-fiber scattering problem, and the analytical expressions of magneto–electro-elastic fields for the multi-fiber composites are obtained in the long-wave limit. These solved magneto–electro-elastic fields are then used to solve the expressions of the static effective moduli, effective wave velocity and attenuation factor of piezoelectric–piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Through numerical examples, it concludes that, if the random set of fiber cross-sections is homogeneous and isotropic, the effective field method is coincident with the Mori–Tanaka mean field method when the static effective moduli of piezoelectric–piezomagnetic composites are looked for. Moreover, the rules of the effective wave velocity versus the volume fraction of fibers are investigated for specific materials.  相似文献   

20.
The present work is a detailed study of the connections between microstructural instabilities and their macroscopic manifestations — as captured through the effective properties — in finitely strained fiber-reinforced elastomers, subjected to finite, plane-strain deformations normal to the fiber direction. The work, which is a complement to a previous and analogous investigation by the same authors on porous elastomers, (Michel et al., 2007), uses the linear comparison, second-order homogenization (S.O.H.) technique, initially developed for random media, to study the onset of failure in periodic fiber-reinforced elastomers and to compare the results to more accurate finite element method (F.E.M.) calculations. The influence of different fiber distributions (random and periodic), initial fiber volume fraction, matrix constitutive law and fiber cross-section on the microscopic buckling (for periodic microgeometries) and macroscopic loss of ellipticity (for all microgeometries) is investigated in detail. In addition, constraints to the principal solution due to fiber/matrix interface decohesion, matrix cavitation and fiber contact are also addressed. It is found that both microscopic and macroscopic instabilities can occur for periodic microstructures, due to a symmetry breaking in the periodic arrangement of the fibers. On the other hand, no instabilities are found for the case of random microstructures with circular section fibers, while only macroscopic instabilities are found for the case of elliptical section fibers, due to a symmetry breaking in their orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号