首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

2.
In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.  相似文献   

3.
A fracture parameter is introduced to characterize crack growth at elevated temperature for a weld interface crack. Finite element analyses are made for a compact tension (CT) specimen under constant load where an interface is modeled along the crack plane to simulate the dividing line of the weld metal (WM) and base metal (BM). A constitutive relation for an elastic-creeping material is used. The proposed time dependent fracture parameter is obtained for different creep constants of WM and BM. A transition time and fracture parameter for the homogeneous and welded specimens are defined such that the results can be normalized and presented in a general form for assessing the crack growth life.  相似文献   

4.
A special crack tip displacement discontinuity element   总被引:3,自引:0,他引:3  
Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given. In the boundary element implementation the special crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement discontinuity modeling technique of a crack presented in this paper is very effective.  相似文献   

5.
A new method is developed to determine the dominant asymptotic stress and deformation fields near the tip of a Mode-I traction free plane stress crack. The analysis is based on the fully nonlinear equilibrium theory of incompressible hyperelastic solids. We show that the dominant singularity of the near tip stress field is governed by the asymptotic solution of a linear second order ordinary differential equation. Our method is applicable to any hyperelastic material with a smooth work function that depends only on the trace of the Cauchy-Green tensor and is particularly useful for materials that exhibit severe strain hardening. We apply this method to study two types of soft materials: generalized neo-Hookean solids and a solid that hardens exponentially. For the generalized neo-Hookean solids, our method is able to resolve a difficulty in the previous work by Geubelle and Knauss (1994a). Our theoretical results are compared with finite element simulations.  相似文献   

6.
A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.  相似文献   

7.
Stationary crack tip fields in bulk metallic glasses under mixed mode (I and II) loading are studied through detailed finite element simulations assuming plane strain, small scale yielding conditions. The influence of internal friction or pressure sensitivity on the plastic zones, notch deformation, stress and plastic strain fields is examined for different mode mixities. Under mixed mode loading, the notch deforms into a shape such that one part of its surface sharpens while the other part blunts. Increase in mode II component of loading dramatically enhances the normalized plastic zone size, lowers the stresses but significantly elevates the plastic strain levels near the notch tip. Higher internal friction reduces the peak tangential stress but increases the plastic strain and stretching near the blunted part of the notch. The simulated shear bands are straight and extend over a long distance ahead of the notch tip under mode II dominant loading. The possible variations of fracture toughness with mode mixity corresponding to failure by brittle micro-cracking and ductile shear banding are predicted employing two simple fracture criteria. The salient results from finite element simulations are validated by comparison with those from mixed mode (I and II) fracture experiments on a Zr-based bulk metallic glass.  相似文献   

8.
A concurrent multiscale method is presented that couples a quantum mechanically governed atomistic domain to a continuum domain. The approach is general in that it is applicable to a wide range of quantum and continuum material modeling methodologies. It also provides quantifiable and controllable coupling errors via a force-based-coupling strategy. The applications presented here utilize an atomistic region that is governed by Kohn–Sham density functional theory and a continuum region governed by linear elasticity with discrete dislocation capabilities. As a validation we compute the core structure of a screw dislocation in aluminum and compare to previously published results. Then we investigate two crack orientations in aluminum and predict the critical load at which crack propagation and crack tip dislocation nucleation occurs. We compute critical loads with both LDA and GGA exchange correlation functionals and compare our results to popular empirical potentials in the context of classical continuum models. Overall this work aims to lay a foundation for future quantum mechanics-based investigations of crack tip processes involving Al alloys and impurity elements.  相似文献   

9.
The 2D model of edge dislocations generation from blunt crack tip in viscoelastic material under residual stress has been proposed, the solution of stress field and displacement field are solved by using complex potential method, conformal mapping and Laplace inverse transformation. The explicit expressions of stress intensity factor, strain energy density and crack tip slide displacement are obtained in closed form. The principle of compatibility of blunt crack to edge dislocations has been used to evaluate the dislocations number and dimensionless ratio α. Numerical results present that the number of edge dislocations first increases and then decreases with increase of zone size ratio of the dislocations zone and none-dislocations zone, but it can be reduced by higher configurations ratio of semi-minor axis and semi-major axis. In addition, it increases with time and tends to be a constant quickly. The normalized multiplier α first increases and then decreases with increase of zone size ratio. In addition, it decreases with time and the increase of crack configurations ratio. Both normalized micro-volume SED and normalized dislocation-volume SED decrease with increase of distance from crack tip and tend to vanish. But the dislocation-volume SED decreases more quickly than micro-volume SED does, because of its stronger singularity. Moreover, they increase with time and decrease of configurations ratio.  相似文献   

10.
In this paper, double dissimilar orthotropic composite materials interfacial crack is studied by constructing new stress functions and employing the method of composite material complex. When the characteristic equations' discriminants △1 〉 0 and △2 〉0, the theoretical formula of the stress field and the displacement field near the mode I interface crack tip are derived, indicating that there is no oscillation and interembedding between the interfaces of the crack.  相似文献   

11.
Constraint effects in adhesive joint fracture are investigated by modelling the adherents as well as a finite thickness adhesive layer in which a single row of cohesive zone elements representing the fracture process is embedded. Both the adhesive and the adherents are elastic-plastic with strain hardening. The bond toughness Γ (work per unit area) is equal to Γ0+Γp, where Γ0 is the intrinsic work of fracture associated with the embedded cohesive zone response and Γp is the extra contribution to the bond toughness arising from plastic dissipation and stored elastic energy within the adhesive layer. The parameters of the model are identified from experiments on two different adhesives exhibiting very different fracture properties. Most of the tests were performed using the wedge-peel test method for a variety of adhesives, adherents and wedge thicknesses. The model captures the constraint effects resulting from the change in Γp: (i) the plastic dissipation increases with increasing bond line thickness in the fully plastic regime and then decreases to reach a constant value for very thick adhesive layers; (ii) the plastic dissipation in the fully plastic regime increases drastically as the thickness of the adherent decreases. Finally, this model is used to assess a simpler approach which consists of simulating the full adhesive layer as a single row of cohesive elements.  相似文献   

12.
Metallic components used in industries and day to day appliances often contain micro-cracks. In general, cracks occur in various orientations to the loading axis. The present paper discusses the criticality of stress triaxiality, a well-known ductile fracture parameter, on the yield loci at the crack tip. In the process, an old model of stress triaxiality has been generalized using unified strength theory to incorporate various convex and nonconvex failure criteria, including single shear, twin shear, etc. The new triaxiality model also reveals about the effect of intermediate principal stress at the crack tip for materials with and without strength difference. The crack initiation angles at the crack tip, obtained through the proposed model have been found to be in unison with those obtained through other fracture criteria.  相似文献   

13.
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of θ only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode Ⅰ, Mode Ⅱ and Mixed-Mode Ⅰ-Ⅱ plane-strain cracks are obtained. These analytical expressions contain Poisson ratio.  相似文献   

14.
A criterion for the onset of deformation twinning (DT) is derived within the Peierls framework for dislocation emission from a crack tip due to Rice (J. Mech. Phys. Solids 40(2) (1992) 239). The critical stress intensity factor (SIF) is obtained for nucleation of a two-layer microtwin, which is taken to be a precursor to DT. The nucleation of the microtwin is controlled by the unstable twinning energyγut, a new material parameter identified in the analysis. γut plays the same role for DT as γus, the unstable stacking energy introduced by Rice, plays for dislocation emission. The competition between dislocation emission and DT at the crack tip is quantified by the twinning tendencyT defined as the ratio of the critical SIFs for dislocation nucleation and microtwin formation. DT is predicted when T>1 and dislocation emission when T<1. For the case where the external loading is proportional to a single load parameter, T is proportional to . The predictions of the criterion are compared with atomistic simulations for aluminum of Hai and Tadmor (Acta Mater. 51 (2003) 117) for a number of different crack configurations and loading modes. The criterion is found to be qualitatively exact for all cases, predicting the correct deformation mode and activated slip system. Quantitatively, the accuracy of the predicted nucleation loads varies from 5% to 56%. The sources of error are known and may be reduced by appropriate extensions to the model.  相似文献   

15.
This paper studies the stress-strain field near crack tip in a pure bending beam of rectangular section with one-sided mode I crack by the analytic method of Ref. [1], then it gives the stress and strain components at the crack tip when the crack propagates and further it obtains the formulas of calculating the elastic deformed area width, the deformed intensity area width and the equation groups of calculating the critical stress of crack propagation, last the equation group of calculating critical stress of crack propagation is verified by calculating instance. The maximum error is 0.18%. First Received May 7, 1994.  相似文献   

16.
In this paper, a deformation theory of plasticity for damaged materials is proposed. An asymptotic expression forH near a crack tip is obtained. Finally, the stress and strain fields near the crack tip are presented.  相似文献   

17.
An approximate solution of the problem of determining the fields of stresses and strain rates due to creep near the tip of a transverse shear crack in a material whose behavior is described by a fractional-linear law of the theory of steady-state creep is given. It is shown that the strain rates have a singularity of the type ∼ r−α near the crack tip; the order of singularity α changes discretely, depending on the polar angle, and takes the values 1, 2/3, and 1/2. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 1, pp. 165–176, January–February, 2009.  相似文献   

18.
We address stepwise crack tip advancement and pressure fluctuations, which have been observed in the field and experimentally in fracturing saturated porous media. Both fracturing due to mechanical loading and pressure driven fracture are considered. After presenting the experimental evidence and the different explanations for the phenomena put forward and mentioning briefly what has been obtained so far by published numerical and analytical methods we propose our explanation based on Biot’s theory. A short presentation of three methods able to simulate the observed phenomena namely the Central Force Model, the Standard Galerkin Finite Element Method SGFEM and extended finite element method XFEM follows. With the Central Force Model it is evidenced that already dry geomaterials break in an intermittent fashion and that the presence of a fluid affects the behavior more or less depending on the loading and boundary conditions. Examples dealing both with hydraulic fracturing and mechanical loading are shown. The conditions needed to reproduce the observed phenomena with FE models at macroscopic level are evidenced. They appear to be the adoption of a crack tip advancement/time step algorithm which interferes the least possible with the three interacting velocities, namely the crack tip advancement velocity on one side, the seepage velocity of the fluid in the domain and from the crack (leak-off), and the fluid velocity within the crack on the other side. Further the crack tip advancement algorithm must allow for reproducing jumps observed in the experiments.  相似文献   

19.
基于扩展有限元法的裂尖场精度研究   总被引:2,自引:0,他引:2  
扩展有限元方法基于单元分解的基本思想,通过引入位移加强函数来表征裂纹的不连续性和裂尖的奇异性。在裂尖加强单元与常规单元之间有一层混合单元,当对裂尖特定区域进行加强时,混合单元个数相应增加,混合单元个数与计算精度存在一定联系。本文提出一种正方形裂尖加强区域的选择方式,可得到较单个加强和圆形加强精度更高、更稳定的计算结果。对于不同长度的裂纹,表征裂尖场奇异性所需的裂尖加强范围存在较大差异,以正方形裂尖加强方式进行计算,得到了不同裂纹长度下最优的加强尺寸。  相似文献   

20.
Crack bridging by discontinuous fibers can make brittle materials tougher by transferring stresses from the crack tip to elsewhere in the matrix material. One important aspect of crack bridging is the nature of the interface between the fibers and the matrix material. In this paper, a two-dimensional numerical model of bridging a Mode I loaded crack by linear elastic discontinuous platelets is developed for two different types of interfaces. The first type is a perfectly bonded interface. The second type is an imperfect interface described as a stick–slip interface. A shear-lag model to predict platelet pullout is developed in detail to verify the numerical implementation of the stick–slip interface. An example of a crack tip bridged by a platelet is examined for both interfaces. The perfectly bonded interface will reduce the Stress Intensity Factor (SIF) of the crack greatly but introduces new stress concentrations at the platelet ends. The stick–slip interface can be tailored to also reduce the SIF while not introducing new stress concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号