首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Effects of a combined substitute of Yb and Nd on Y site on the superconducting properties of YBa2Cu3Oy have been studied. We synthesized Y1−x(Yb0.9Nd0.1)xBa2Cu3Oz compound with x = 0.2, 0.4, 0.6, 0.8 and 1.0. Here, the ratio of Yb–Nd was fixed to be 9:1 for obtaining 123 phase without secondary phases. The melt processing thermal profiles for Y1−x(Yb0.9Nd0.1)xBa2Cu3Oz with x = 0.2 and 0.4 and the addition of 40 mol% {Y1−x(Yb0.9Nd0.1)x}2BaCuO5 and 0.5 wt% Pt in air were determined on the basis of the thermal analysis results. All samples showed a low grain growth rate, particularly for high x values, which may be partially ascribed to un-optimized thermal schedules. Although almost all the samples exhibited low Jc values, the sample with x = 0.2 exhibited Tc of 88.8 K and a relatively high Jc value of 16,000 A/cm2 at 77 K for H//c-axis.  相似文献   

2.
We have developed a terahertz time-domain spectroscopy (THz-TDS) system for reflectivity measurement with a temperature-controllable cryostat. For emission and detection of THz radiation, a Ti:Sapphire pulsed laser and photoconductive antennas are used. Two wire-grid polarizers enable us to carry out the polarized reflectivity measurements. Using our THz-TDS system, we measured the c-axis polarized reflectivity spectra for La2−xSrxCuO4 single crystals (x = 0.10 and 0.13) and observed sharp Josephson plasma edges for both samples below Tc. The reflectivity spectra of the x = 0.10 sample were in good agreement with those reported previously, which confirms the validity of the system. For the x = 0.13 sample, we discuss the anomolous features of the optical spectra.  相似文献   

3.
Bulk superconductivity was observed in the FeAs-based RE1−xSrxFeAsO (RE = La, Pr) when the di-valence element Sr was substituted to the site of the tri-valence element La and Pr. The maximum superconducting transition temperatures Tc for the two systems are 26 K and 16.3 K, respectively. The doping dependence of the electrical properties and structure of these two systems were investigated systematically. A roughly monotonic increase of Tc and the lattice constants (a-axis and c-axis) with Sr concentration and a saturation behavior in the high doping levels were found. We confirmed that conduction in this type of materials is dominated by hole-like charge carriers by the Hall effect measurements. Also the resistive measurements revealed possible higher upper critical field in these systems comparing with the electron-doped ones.  相似文献   

4.
Optical transmittance measurements near the absorption edge of [Kx(NH4)1−x]2ZnCl4 mixed crystals, where x=0.00, 0.232, 0.522, 0.644, 0.859 and 1.00, are reported over 276–350 K range. Analysis reveals that the type of transition is the indirect allowed one. The absorption edge shifted towards lower energy with increasing temperature. It is shown that [Kx(NH4)1−x]2ZnCl4 mixed crystals with x0.644 reveal a phase transition at 319 K, this phase disappeared at high concentrations of K+ ions. The steepness parameter is given, its value is used to estimate the temperature dependence of the indirect energy gap. In the region of the absorption edge, the absorption coefficient obeys Urbach's rule. Urbach parameters are investigated as a function of temperature.  相似文献   

5.
Zn1−xCoxO films were grown on glass by sol–gel spin coating process. The Zn1−xCoxO thin films with 10 at.% Co were highly c-axis oriented. The electrical resistivity of the films at 10 at.% Co had the lowest value due to the highest c-axis orientation. XPS and AGM analyses indicated that Co metal clusters weren’t formed, and the ferromagnetism was appeared at room temperature. The characteristics of the electrical resistivity and room temperature ferromagnetism of sol–gel derived Zn1−xCoxO films suggest a potential application to dilute magnetic semiconductor devices.  相似文献   

6.
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on multi-layered cuprate superconductor Ba2Ca5Cu6O12 (O1−x Fx)2 are carried out. STM topographies show randomly distributed bright spot structures with a typical spot size of 0.8 nm. These bright spots are occupied about 28% per one unit cell of c-plane, which is comparable to the regular amount of apical oxygen of 20% obtained from element analysis. Tunneling spectra simultaneously show both the small and the large gap structures. These gap sizes at 4.9 K are about Δ 15 meV and 90 meV, respectively. The small gap structure disappears at the temperature close to TC, while the large gap persists up to 200 K. Therefore, these features correspond to the superconducting gap and pseudogap, respectively. These facts give evidence for some ordered state with large energy scale even in the superconducting state. For the superconducting gap, the ratio of 2Δ/KBTC = 4.9 is obtained with TC = 70 K, which is determined from temperature dependence of the tunneling spectra.  相似文献   

7.
In continuous magnetic fields H up to 28 T, we have studied the out-of-plane transport properties and tunneling characteristics of high-quality nondoped single crystals of the Bi-cuprate family: Bi2Sr2CuO6+δ (Bi2201), Bi2Sr2CaCu2O8+δ (Bi2212) and Bi2Sr2Ca2Cu3O10+δ (Bi2223) grown by an identical method. For all compounds the out-of-plane magnetotransport ρc(H) is negative in the temperature region where ρc(T) shows in the normal state a semiconducting-like temperature dependence. The negative magnetoresistance of ρc corresponds to the suppression of the semiconducting temperature dependence of ρc(T) which is found to be isotropic. For the Bi2201 compound, where the normal state can be reached in the available magnetic fields (28 T), a nearly complete suppression of the low-temperature upturn in ρc(T) is observed in the highest magnetic fields with a tendency towards a metallic behavior down to the lowest temperatures (0.4 K). Using the break-junction technique, especially for the Bi2212 and Bi2232 compounds, a clear superconducting gap structure can be observed. Both for temperatures above the critical temperature and for magnetic fields above the upper critical field, a pseudogap structure remains present in the tunneling spectra. The applied magnetic fields yield a stronger suppression of the superconducting state compared to that of the normal-state gap structures as manifested in ρc(T) transport and tunneling.  相似文献   

8.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

9.
A new series of mixed oxide superconductors with the stoichiometric composition La2−x Dy x Ca y Ba2Cu4+y O z (x=0.0 − 0.5, y=2x) has been studied for structural and superconductiong properties. Our earlier studies on La2−x (Y/Er) x Ca y Ba2Cu4+y O z series, show a strong dependence of T c on hole concentration (p sh). In the present work, the results of the analysis of the neutron diffraction measurements at room temprerature on x=0.3 and 0.5 samples are reported. It is interesting to know that Ca substitutes for both La and Ba site with concomitant displacement of La onto Ba site. Superconductivity studies show that maximum T c is obtained for x=0.5, y=1.0 sample (T c ∼ 75 K), for La1.5Dy0.5Ca1Ba2Cu5O z (La-2125).  相似文献   

10.
The binary system CeO2–ZrO2 is thermally stable and has superior reduction–oxidation properties. It has been commonly used in the three-way catalytic converters for automobiles. In this work, an inorganic biomorphic porous CexZr1−xO2 fibrous network was successfully synthesized by using the egg shell membrane (ESM) as templates, and its morphology was a perfect replica of the original ESM. The synthesis involved a simple infiltration and calcination process. A fresh ESM was peeled from a chicken egg shell. It was soaked in a Ce(NO3)3 and Zr(NO3)4 mixture before it was calcined at 700 °C in ambient environment. The fibers in the biomorphic network had diameter ranged from 1 to 4 μm, and they were composed of CexZr1−xO2 nanocrystallites having an average grain size of 10 nm.  相似文献   

11.
The structural, electronic and thermodynamic properties of the SrS1–xOx ternary mixed crystals have been studied using the ab initio full potential linearized augmented plane wave (FP-LAPW) method within density functional theory. The effect of composition on lattice parameter, bulk modulus and band gap was investigated. The lattice constants from Vegard's law and the bulk modulus from linear concentration dependence were observed for the alloys. The microscopic origins of the gap bowing were explained by using the approach of Zunger and co-workers. The thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing ΔHm as well as the phase diagram. In addition to FP-LAPW method, the composition dependence of the refractive index and the dielectric constant was studied by different models.  相似文献   

12.
In order to elucidate how oxygen content changes in Nd2 − xSrxNiO4 + δ (x = 0, 0.2, 0.4), defect chemical and statistical thermodynamic analyses were carried out. The relationship among δ, P(O2), and T were analyzed by a defect equilibrium model. Since Nd2 − xSrxNiO4 + δ shows metal like band conduction at high temperatures, chemical potential of hole is expressed by the integration of the Fermi-Dirac distribution function and the density of state. The nonstoichiometric variation of oxygen content in Nd2 − xSrxNiO4 + δ can be explained by the defect equilibrium model with a regular solution approximation. Partial molar entropy and partial molar enthalpy of oxygen are calculated from the nonstoichiometric data and Gibbs–Helmholtz equation. The relationship among defect structure, defect equilibrium, and thermodynamic quantities is elucidated by the statistical thermodynamic model. Thermodynamic quantities are calculated by the statistical thermodynamic model with the results of defect chemical analysis and compared with those obtained from experimental results. Thermodynamic quantities calculated by the statistical thermodynamic model can explain rough tendency of those obtained from the δTP(O2) relationship.  相似文献   

13.
The role of charge carriers in ZnO2/CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4−yZnyO12−δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d10 (S=0) substitution at Cu 3d9 sites in the inner CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron–phonon interaction has an essential role in the mechanism of high-Tc superconductivity in these compounds.  相似文献   

14.
Gd1−xCaxBaSrCu3O7−δ samples (0  x  0.1) were prepared via solid-state reaction. Four-point probes method was used for resistance versus temperature measurements. Results show decrease in Tc by increasing x content. This variation is assumed to be irrelevant to the different phases or impurity effects since X-ray patterns show all samples are tetragonal single-phase. Ca doping decreases the oxygen content and lattice parameters of the samples. It is suggested that Ca prevents the dislocation of oxygen, and then disrupts the hole concentration of the system and antiferromagnetic correlation at CuO2 planes. Subsequently, destroys the superconductivity of the samples.  相似文献   

15.
The nominal composition of Y0.8Ca0.2Ba2−xLaxCu3Oy (YBLCO) cuprates with x≤0.50 has been synthesized by the standard solid state reaction technique. X-ray diffraction and the resistivity measurements are used to characterize the structure and the superconductivity of YBLCO cuprates. There is no structural phase transition in the whole doping range. The dependencies of the lattice constants and some other structural parameters on the content of La for the samples YBLCO with x≤0.20 are different than those for the samples with x≥0.25. The zero resistance temperature Tc0 increases with the increase of the content of La in YBLCO as x≤0.20, and decreases as x≥0.25. We compared these results with those of Nd-doped Y0.8Ca0.2Ba2−zNdzCu3Oy cuprates. It seems that Tc0 is related to the structural parameters due to Ca and La codoping in YBLCO.  相似文献   

16.
针对NiS2-xSex系统在x=1.00附近发生的反铁磁量子相变,制备了一系列NiS2-xSex(x=0.96, 0.98, 1.00, 1.05, 1.10和1.20)多晶样品,对其结构、磁性质和电阻率进行了系统的观测.结果发现:样品磁化率-温度关系呈现典型的强关联电子系统特征;与铜氧化物超导体相类似,它们的电阻率-温度关系在很宽的温 关键词: 量子相变 反铁磁自旋涨落 2-xSex体系')" href="#">NiS2-xSex体系  相似文献   

17.
The glasses with the composition of 37.5Li2O–(25 − x)Fe2O3xNb2O5–37.5P2O5 (mol%) (x = 5,10,15) are prepared, and it is found that the addition of Nb2O5 is effective for the glass formation in the lithium iron phosphate system. The glass–ceramics consisting of Nasicon-type Li3Fe2(PO4)3 crystals with an orthorhombic structure are developed through conventional crystallization in an electric furnace, showing electrical conductivities of 3 × 10− 6 Scm− 1 at room temperature and the activation energies of 0.48 eV (x = 5) and 0.51 eV (x = 10) for Li+ ion conduction in the temperature range of 30–200 °C. A continuous wave Nd:YAG laser (wavelength: 1064 nm) with powers of 0.14–0.30 W and a scanning speed of 10 μm/s is irradiated onto the surface of the glasses, and the formation of Li3Fe2(PO4)3 crystals is confirmed from XRD analyses and micro-Raman scattering spectra. The crystallization of the precursor glasses is considered as new route for the fabrication of Li3Fe2(PO4)3 crystals being candidates for use as electrolyte materials in lithium ion secondary batteries.  相似文献   

18.
Ba(Ti1−x,Nix)O3 thin films were prepared on fused quartz substrates by a sol–gel process. X-ray diffraction and Raman scattering measurements showed that the films are of pseudo-cubic perovskite structure with random orientation and the change of lattice constant caused by Ni-doping with different concentrations is very small. Optical transmittance spectra indicated that Ni-doping has an obvious effect on the energy band structure. The energy gap of Ba(Ti1−x,Nix)O3 decreased linearly with the increase of Ni concentration. It indicates that the adjusting of band gap can be achieved by controlling the Ni-doping content accurately in Ba(Ti1−x,Nix)O3 thin films. This has potential application in devices based on ferroelectric thin films.  相似文献   

19.
Using a scanning probe microscope, we investigate the structure, electronic and mechanical properties of MoS2–Ix nanotubes and Mo6SxIy nanowires. The electronic properties are interestingly very sensitive to the stoichiometry of the nanowires, which can be controlled by adjusting the synthesis conditions. In addition to that, we find also remarkable mechanical properties where molecules can be cut and recombined or deformed without any loss of structural integrity. We demonstrate this by deforming Mo6SxIy nanowires to highly strained configurations without causing irreversible changes to their structures. The rupturing and/or welding process of these nanowires, using AFM manipulation, shows that the molecules stretch to more than 30% of its relaxed configuration before plastic deformation occurs.  相似文献   

20.
The formation of silicon nanoclusters embedded in amorphous silicon nitride (SiNx:H) can be of great interest for optoelectronic devices such as solar cells. Here amorphous SiNx:H layers have been deposited by remote microwave-assisted chemical vapor deposition at 300 °C substrate temperature and with different ammonia [NH3]/silane [SiH4] gas flow ratios (R=0.5−5). Post-thermal annealing was carried out at 700 °C during 30 min to form the silicon nanoclusters. The composition of the layers was determined by Rutherford back scattering (RBS) and elastic recoil detection analysis (ERDA). Fourier transform infrared spectroscopy (FTIR) showed that the densities of SiH (2160 cm−1) and NH (3330 cm−1) molecules are reduced after thermal annealing for SiN:H films deposited at flow gas ratio R>1.5. Breaking the SiH bonding provide Si atoms in excess in the bulk of the layer, which can nucleate and form Si nanostructures. The analysis of the photoluminescence (PL) spectra for different stoichiometric layers showed a strong dependence of the peak characteristics (position, intensity, etc.) on the gas flow ratio. On the other hand, transmission electron microscopy (TEM) analysis proves the presence of silicon nanoclusters embedded in the films deposited at a gas flow ratio of R=2 and annealed at 700 °C (30 min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号