首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A variational formulation of the vertically-integrated differential equations for free surface wave motion is presented. A finite element model is derived for solving this nonlinear system of hydrodynamic equations. The time integration scheme employed is discussed and the results obtained demonstrate its good stability and accuracy.Several applications of the model are considered: the first problem is an open channel of uniform depth and the second an open channel of linearly varying depth. The ‘inflow’ boundary condition is prescribed in terms of the velocity which represents a wavemaker and/or a flow source, while the ‘outflow’ boundary condition is specified in terms of the water elevation. The outflow condition is adjusted for two cases, a reflecting boundary (finite channel) and a non-reflecting boundary (open-ended channel). The latter boundary condition is examined in some detail and the results obtained show that the numerical model can produce the non-reflecting boundary that is similar to the analytical radiation condition for waves. Computational results for a third problem, involving wave reflection from a submerged cylinder, are also presented and compared with both experimental data and analytical predictions.The simplicity and the performance of the computational model suggest that free surface waves can be simulated without excessively complicated numerical schemes. The ability of the model to simulate outflow boundary conditions properly is of special importance since these conditions present serious problems for many numerical algorithms.  相似文献   

2.
The interaction of flexural‐gravity waves with a thin circular‐arc‐shaped permeable plate submerged beneath the ice‐covered surface of water with uniform finite depth is considered under the assumption of linear theory. The problem is reduced to a second kind hypersingular integral equation for the potential difference across the plate which is solved approximately by an expansion–collocation method. Utilizing the solution, the reflection and the transmission coefficients and the hydrodynamic forces are evaluated numerically. The focus of the paper is to illustrate the effect of a porous curved plate submerged in finite depth water with an ice‐cover on the normally incident waves. Numerical results for a circular‐arc‐shaped plate for different configurations are derived and represented graphically. Also, by choosing an appropriate set of parameters, the known results for a circular‐arc‐shaped rigid plate submerged in deep water and a semicircular porous plate submerged in finite depth water with a free surface are recovered as special cases.  相似文献   

3.
The interaction of water waves with circular plate within the framework of a linear theory is considered. The plate lies on the free surface in water of finite depth. The integral transform technique is used to solve this problem. The problem is reduced to a system of dual integral equations for a spectral function. The way to solve these equations consists in converting them into Fredholm integral equation of the second kind. The asymptotic solutions of this equation are obtained. Representations for diffraction field and for the forces on the plate are given.  相似文献   

4.
When a dispersive wave system is subject to forcing by a moving external disturbance, a maximum or minimum of the phase speed is associated with a critical forcing speed at which the linear response is resonant. Nonlinear effects can play an important part near such resonances, and the salient characteristics of the nonlinear response depend on whether the maximum or minimum of the phase speed is realized in the long-wave limit (zero wavenumber) or at a finite wavenumber. The focus here is on the latter case that, among other physical systems, applies to gravity–capillary waves on water of finite or infinite depth. The analysis, for simplicity, is based on a forced–damped fifth-order Korteweg–de Vries equation, a model problem that features a phase-speed minimum at a finite wavenumber. When damping is not too strong compared with forcing, multiple subcritical finite-amplitude steady-solution branches coexist with the small-amplitude response predicted by linear theory. For forcing speed well below critical, the transient response from rest approaches the small-amplitude state, but at speeds close to critical, jump phenomena can occur, and reaching a time-periodic state that involves shedding of wavepacket solitary waves is also possible.  相似文献   

5.
The Ostrovsky–Hunter equation provides a model for small-amplitude long waves in a rotating fluid of finite depth. It is a nonlinear evolution equation. In this paper we study the well-posedness for the Cauchy problem associated with this equation in presence of some weak dissipation effects.  相似文献   

6.
The paper focuses on a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity which describes the propagation of transverse electric waves along a dielectric layer filled with nonlinear medium. It is proved that even if the nonlinearity coefficients are small, the nonlinear problem has infinitely many nonperturbative solutions, whereas the corresponding linear problem always has a finite number of solutions. This results in the theoretical existence of a novel type of nonlinear guided waves that exist only in nonlinear guided systems. Asymptotic distribution of the eigenvalues is found and a comparison theorem is proved; periodicity of the eigenfunctions is proved, the exact formula for the period is found, and the zeros of the eigenfunctions are determined. The results found essentially extend the theory evolved earlier (particular cases for Kerr, cubic-quintic, septic nonlinearities, etc. are easily extracted from the general results found here). Numerical results are also presented.  相似文献   

7.
The problem of stable plane capillary-gravitational waves of finite amplitude on the surface of a perfect incompressible fluid stream of finite depth is considered. It is assumed that the waves are induced by pressure periodically distributed along the free surface, and that these, unlike induced waves, do not vanish when the pressure becomes constant, are transformed into free waves. Such waves are called composite; they exist similarly to free waves, for particular values of velocity of the stream.The problem, which is rigorously stated, reduces to solving a system of four nonlinear equations for two functions and two constants. One of the equations is integral and the remaining are transcendental. Pressure on the surface is defined by an infinite trigonometric series whose coefficients are proportional to integral powers of some dimensionless small parameter; these powers are by two units greater than the numbers of coefficients.The theorem of existence and uniqueness of solution is established, and the method of its proof is indicated. The derivation of solution in any approximation is presented in the form of series in powers of the indicated small parameter. Computation of the first three approximations is carried out to the end, and an approximate equation of the wave profile is presented.Composite capillary-gravitational waves in the case of fluid of infinite depth were considered by the author in [1].  相似文献   

8.
This paper presents an experimental investigation on nonlinear low frequency gravity water waves in a partially filled cylindrical shell subjected to high frequency horizontal excitations. The characteristics of natural frequencies and mode shapes of the water–shell coupled system are discussed. The boundaries for onset of gravity waves are measured and plotted by curves of critical excitation force magnitude with respect to excitation frequency. For nonlinear water waves, the time history signals and their spectrums of motion on both water surface and shell are recorded. The shapes of water surface are also measured using scanning laser vibrometer. In particular, the phenomenon of transitions between different gravity wave patterns is observed and expressed by the waterfall graphs. These results exhibit pronounced nonlinear properties of shell–fluid coupled system.  相似文献   

9.
We consider steady symmetric gravity water waves on finite depth with constant vorticity and a monotone surface profile between crests and troughs. The problem is transformed into one concerning the vertical velocity. A representation formula for the stream function in terms of the surface and the vorticity is presented, and we show that the surface can be determined from the vertical velocity.  相似文献   

10.
We study the evolution of small-amplitude water waves when the fluid motion is three dimensional. An isotropic pseudodifferential equation that governs the evolution of the free surface of a fluid with arbitrary, uniform depth is derived. It is shown to reduce to the Benney-Luke equation, the Korteweg-de Vries (KdV) equation, the Kadomtsev-Petviashvili (KP) equation, and to the nonlinear shallow water theory in the appropriate limits. We compute, numerically, doubly periodic solutions to this equation. In the weakly two-dimensional long wave limit, the computed patterns and nonlinear dispersion relations agree well with those of the doubly periodic theta function solutions to the KP equation. These solutions correspond to traveling hexagonal wave patterns, and they have been compared with experimental measurements by Hammack, Scheffner, and Segur. In the fully two-dimensional long wave case, the solutions deviate considerably from those of KP, indicating the limitation of that equation. In the finite depth case, both resonant and nonresonant traveling wave patterns are obtained.  相似文献   

11.
In this paper, we consider the Riemann problem and interaction of elementary waves for a nonlinear hyperbolic system of conservation laws that arises in shallow water theory. This class of equations includes as a special case the equations of classical shallow water equations. We study the bore and dilatation waves and their properties, and show the existence and uniqueness of the solution to the Riemann problem. Towards the end, we discuss numerical results for different initial data along with all possible interactions of elementary waves. It is noticed that in contrast to the p -system, the Riemann problem is solvable for arbitrary initial data, and its solution does not contain vacuum state.  相似文献   

12.
13.
There are essentially two types of three-dimensional water waves: waves that bifurcate from the state of rest (these waves are commonly called short-crested waves or forced waves), and waves that bifurcate from a two-dimensional wave of finite amplitude (these waves are sometimes called spontaneous waves). This paper deals with spontaneously generated three-dimensional waves. To understand this phenomenon better from a mathematical point of view, it is helpful to work on model equations rather than on the full equations. Such an attempt was made formally by Martin in 1982 on the nonlinear Schrödinger equation, but it is shown here that it is hard to justify his results mathematically because of the hyperbolicity of the nonlinear Schrödinger equation for gravity waves. On the other hand, in some parameter regimes, the nonlinear Schrödinger equation becomes elliptic. In that case, the appearance of spontaneous three-dimensional waves can be shown rigorously by using a dynamical systems approach. The results are extended to the Benney–Roskes–Davey–Stewartson equations when they are both elliptic. Various types of three-dimensional waves bifurcating from a two-dimensional periodic wave are obtained.  相似文献   

14.
A longitudinal elastic impact caused by a body on a thin rod is considered. The results of theoretical, finite element, and experimental approaches to solving the problem are compared. The theoretical approach takes into account both the propagation of longitudinal waves in the rod and the local deformations described in the Hertz model. This approach leads to a differential equation with a delayed argument. The three-dimensional dynamic problem is considered in terms of the finite element approach in which the wave propagation and local deformation are automatically taken into account. A benchmark test of these two approaches showed a complete qualitative and satisfactory quantitative agreement of the results concerning the contact force and the impact time. In the experiments, only the impact time was determined. The comparison of the measured impact time with the theoretical and finite element method’s results was satisfactory. Owing to the fact that the tested rod was relatively short, the approximate model with two degrees of freedom was also developed to calculate the force and the impact time. The problem of excitation of transverse oscillation after the rebound of the impactor off the rod is solved. For the parametric resonance, the motion has a character of beats at which the energy of longitudinal oscillation is transferred into the energy of transverse oscillation and vice versa. The estimate for the maximum possible amplitude of transverse oscillation is obtained.  相似文献   

15.
Many students struggle with college mathematics topics due to a lack of mastery of prerequisite knowledge. Set theory language is one such prerequisite for linear algebra courses. Many students’ mistakes on linear algebra questions reveal a lack of mastery of set theory knowledge. This paper reports the findings of a qualitative analysis of a group of linear algebra students’ mistakes on a set of linear algebra questions. The paper also details an in-time intervention (a pedagogical approach) to enhance students’ understanding of linear algebra concepts through advancing their set theory knowledge. Mathematics teachers can consider similar approaches to address their students’ mistakes.  相似文献   

16.
Water wave scattering by finite arrays of circular structures   总被引:1,自引:0,他引:1  
The scattering of small amplitude water waves by a finite arrayof locally axisymmetric structures is considered. Regions ofvarying quiescent depth are included and their axisymmetricnature, together with a mild-slope approximation, permits anadaptation of well-known interaction theory which ultimatelyreduces the problem to a simple numerical calculation. Numericalresults are given and effects due to regions of varying depthon wave loading and free-surface elevation are presented.  相似文献   

17.
In this paper we investigate the effect of a prescribed superficial shear stress on the generation and structure of roll waves developing from infinitesimal disturbances on the surface of a power-law fluid layer flowing down an incline. The unsteady equations of motion are depth integrated according to the von Kármán momentum integral method to obtain a non-homogeneous system of nonlinear hyperbolic conservation laws governing the average flow rate and the thickness of the fluid layer. By conducting a linear stability analysis we obtain an analytical formula for the critical conditions for the onset of instability of a uniform and steady flow in terms of the prescribed surface shear stress. A nonlinear analysis is performed by numerically calculating the nonlinear evolution of a perturbed flow. The calculation is carried out using a high-resolution finite volume scheme. The source term is handled by implementing the quasi-steady wave propagation algorithm. Conclusions are drawn regarding the effect of the applied surface shear stress parameter and flow conditions on the development and characteristics of the roll waves arising from the instability. For a Newtonian flow subjected to a prescribed superficial shear stress, using an analytical theory, we show that the nonlinear governing equations do not admit roll waves solutions under conditions when the uniform and steady flow is linearly stable. For the case of a general power-law fluid flow with zero shear stress applied at the surface, the analytical investigation leads to a procedure for calculating the characteristics of a roll waves flow. These results are compared with those yielded by the numerical procedure.  相似文献   

18.
In this paper we investigate the direct problem associated with the scattering of ‘plane waves’ from an object submerged in an ocean of finite depth. An integral representation for the Dirichlet problem is found, from which a formula for the far-field pattern evolves. A density theorem is established concerning the set of all far-field patterns. This theorem is essential for the reconstruction of the submerged object, the ‘inverse’ problem [2], [4], [5].  相似文献   

19.
Two-dimensional periodic surface waves propagating under the combined influence of gravity and surface tension on water of finite depth are considered. Within the framework of small-amplitude waves, we find the exact solutions of the nonlinear differential equation system which describes the particle motion in the considered case, and we describe the possible particle trajectories. The required computations involve elliptic integrals of the first kind, the Legendre normal form and a solvable Abel differential equation of the second kind. Some graphs of the results are included.  相似文献   

20.
Many models of shallow water waves, such as the famous Camassa–Holm equation, admit peaked solitary waves. However, it is an open question whether or not the widely accepted peaked solitary waves can be derived from the fully nonlinear wave equations. In this paper, a unified wave model (UWM) based on the symmetry and the fully nonlinear wave equations is put forward for progressive waves with permanent form in finite water depth. Different from traditional wave models, the flows described by the UWM are not necessarily irrotational at crest, so that it is more general. The unified wave model admits not only the traditional progressive waves with smooth crest, but also a new kind of solitary waves with peaked crest that include the famous peaked solitary waves given by the Camassa–Holm equation. Besides, it is proved that Kelvin’s theorem still holds everywhere for the newly found peaked solitary waves. Thus, the UWM unifies, for the first time, both of the traditional smooth waves and the peaked solitary waves. In other words, the peaked solitary waves are consistent with the traditional smooth ones. So, in the frame of inviscid fluid, the peaked solitary waves are as acceptable and reasonable as the traditional smooth ones. It is found that the peaked solitary waves have some unusual and unique characteristics. First of all, they have a peaked crest with a discontinuous vertical velocity at crest. Especially, unlike the traditional smooth waves that are dispersive with wave height, the phase speed of the peaked solitary waves has nothing to do with wave height, but depends (for a fixed wave height) on its decay length, i.e., the actual wavelength: in fact, the peaked solitary waves are dispersive with the actual wavelength when wave height is fixed. In addition, unlike traditional smooth waves whose kinetic energy decays exponentially from free surface to bottom, the kinetic energy of the peaked solitary waves either increases or almost keeps the same. All of these unusual properties show the novelty of the peaked solitary waves, although it is still an open question whether or not they are reasonable in physics if the viscosity of fluid and surface tension are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号