共查询到20条相似文献,搜索用时 15 毫秒
1.
W. T. Flowers R. N. Haszeldine A. Janik A. K. Lee P. G. Marshall R. D. Sedgwick 《Journal of polymer science. Part A, Polymer chemistry》1972,10(12):3497-3501
Mass spectra of the volatile fractions from polyperfluorobut-2-yne have been obtained. The polymer appears to be thermally stable up to 300°C and molecules containing up to 12 monomer units have been identified. A regular structure is indicated by the mass spectrum which is characterized by unusually intense doubly charged ions. The endgroups are readily identified, and a conjugated polyolefin structure is indicated. 相似文献
2.
We study how the degree of fluorine substitution for hydrogen atoms in ethene affects its reactivity in the gas phase. The reactions of a series of small fluorocarbon cations (CF(+), CF(2)(+), CF(3)(+), and C(2)F(4)(+)) with ethene (C(2)H(4)), monofluoroethene (C(2)H(3)F), 1,1-difluoroethene (CH(2)CF(2)), and trifluoroethene (C(2)HF(3)) have been studied in a selected ion flow tube. Rate coefficients and product cations with their branching ratios were determined at 298 K. Because the recombination energy of CF(2)(+) exceeds the ionization energy of all four substituted ethenes, the reactions of this ion produce predominantly the products of nondissociative charge transfer. With their lower recombination energies, charge transfer in the reactions of CF(+), CF(3)(+), and C(2)F(4)(+) is always endothermic, so products can only be produced by reactions in which bonds form and break within a complex. The trends observed in the results of the reactions of CF(+) and CF(3)(+) may partially be explained by the changing value of the dipole moment of the three fluoroethenes, where the cation preferentially attacks the more nucleophilic part of the molecule. Reactions of CF(3)(+) and C(2)F(4)(+) are significantly slower than those of CF(+) and CF(2)(+), with adducts being formed with the former cations. The reactions of C(2)F(4)(+) with the four neutral titled molecules are complex, giving a range of products. All can be characterized by a common first step in the mechanism in which a four-carbon chain intermediate is formed. Thereafter, arrow-pushing mechanisms as used by organic chemists can explain a number of the different products. Using the stationary electron convention, an upper limit for Δ(f)H°(298)(C(3)F(2)H(3)(+), with structure CF(2)═CH-CH(2)(+)) of 628 kJ mol(-1) and a lower limit for Δ(f)H°(298)(C(2)F(2)H(+), with structure CF(2)═CH(+)) of 845 kJ mol(-1) are determined. 相似文献
3.
M. K. Chaudhuri H. S. Dasgupta N. Roy D. T. Khathing 《Journal of mass spectrometry : JMS》1981,16(12):534-537
The electron impact induced mass spectra of [CF3SMn(CO)4]2, [CF3SeMn(CO)4]2, [CF3SFe(CO)3]2, [CF3SeFe(CO)3]2, CF3SeFe(CO)2C5H5 and CF3SCr(NO)2C5H5 are reported. These compounds exhibit weak molecular ion peaks and undergo preferential loss of CO or NO groups. The CO or NO free fragments suffer typical loss of ECF2(E = S, Se) with the simultaneous shift of F from carbon to metal. The ions [FFeC5H5]+ and [FCrC5H5]+ in the spectra of the cyclopentadienyl compounds prefer expulsion of π-cyclopentadienyls. The pyrolysis effects on the spectra of the compounds have been studied. An increase in temperature eases the expulsion of ECF2 groups from all the compounds and favors the formation of [Fe(C5H5)2]+ and [Cr(C5H5)2]+ in the cyclopentadienyl compounds. 相似文献
4.
Kareev IE Shustova NB Kuvychko IV Lebedkin SF Miller SM Anderson OP Popov AA Strauss SH Boltalina OV 《Journal of the American Chemical Society》2006,128(37):12268-12280
Reaction of C(60) with CF(3)I at 550 degrees C, which is known to produce a single isomer of C(60)(CF(3))(2,4,6) and multiple isomers of C(60)(CF(3))(8,10), has now been found to produce an isomer of C(60)(CF(3))(6) with the C(s)-C(60)X(6) skew-pentagonal-pyramid (SPP) addition pattern and an epoxide with the C(s)-C(60)X(4)O variation of the SPP addition pattern, C(s)-C(60)(CF(3))(4)O. The structurally similar epoxide C(s)-C(60)(C(2)F(5))(4)O is one of the products of the reaction of C(60) with C(2)F(5)I at 430 degrees C. The three compounds have been characterized by mass spectrometry, DFT quantum chemical calculations, Raman, visible, and (19)F NMR spectroscopy, and, in the case of the two epoxides, single-crystal X-ray diffraction. The compound C(s)-C(60)(CF(3))(6) is the first [60]fullerene derivative with adjacent R(f) groups that are sufficiently sterically hindered to cause the (DFT-predicted) lengthening of the cage (CF(3))C-C(CF(3)) bond to 1.60 A as well as to give rise to a rare, non-fast-exchange-limit (19)F NMR spectrum at 20 degrees C. The compounds C(s)-C(60)(CF(3))(4)O and C(s)-C(60)(C(2)F(5))(4)O are the first poly(perfluoroalkyl)fullerene derivatives with a non-fluorine-containing exohedral substituent and the first fullerene epoxides known to be stable at elevated temperatures. All three compounds demonstrate that the SPP addition pattern is at least kinetically stable, if not thermodynamically stable, at temperatures exceeding 400 degrees C. The high-temperature synthesis of the two epoxides also indicates that perfluoroalkyl substituents can enhance the thermal stability of fullerene derivatives with other substituents. 相似文献
5.
E. N. Shaposhnikova S. R. Sterlin S. P. Solodovnikov N. N. Bubnov I. V. Stankevich A. L. Chistyakov B. L. Tumanskii 《Russian Chemical Bulletin》1998,47(11):2160-2163
The ESR spectra of radical anions formed by reduction of α-diketones RC(O)C(O)CF3 (R=(CF3)2CF, C6F5, (CF3)3C) with metals (Li, Na, K, Mg, Cd, Zn, Hg, In, and TI) in THF were studied. For R=(CF3)2CF and C6F5, the radical anions are formed ascis-isomers, whereas for R=(CF3)3C,trans-isomers are obtained. Line broadening due to solvation and desolvation of the cation is observed in the latter case. The
reduction of α-diketone (CF3)2CFC(O)C(O)CF3 with Group II metals (Mg, Cd, Zn) results in the formation of radical pairs.
Translated fromIzvestiya Akadmii Nauk. Seriya Khimicheskaya, No. 11, pp. 2228–2231, November, 1998. 相似文献
6.
Synthesis and Properties of Tetrakis(Perfluoroalkyl)Tellurium Te(Rf)4 (Rf = CF3, C2F5, C3F7, C4F9) Te(CF3)4 is obtained from the reaction of Te(CF3)Cl2 with Cd(CF3)2 complexes as a complex with e. g. CH3CN, DMF. It is a light and temperature sensitive hydrolysable liquid. The reaction with fluorides yields the complex anion [Te(CF3)4F]−, with fluoride ion acceptors the complex cation [Te(CF3)3]+. With traces of water an acidic solution is formed. Te(CF3)4 acts as a trifluoromethylation reagent. The reaction with XeF2 gives hints for the formation of Ye(CF3)4F2. Properties and NMR spectra are discussed. The much more stable complexes of Te(Rf)4 (Rf = C2F5, C3F7, C4F9) are formed from the reaction of TeCl4 with the corresponding Cd(Rf)2 complexes. 相似文献
7.
Haloacetyl, peroxynitrates are intermediates in the atmospheric degradation of a number of haloethanes. In this work, thermal decomposition rate constants of CF3C(O)O2NO2, CClF2C(O)O2NO2, CCl2FC(O)O2NO2, and CCl3C(O)O2NO2 have been determined in a temperature controlled 420 l reaction chamber. Peroxynitrates (RO2NO2) were prepared in situ by photolysis of RH/Cl2/O2/NO2/N2 mixtures (R = CF3CO, CClF2CO, CCl2FCO, and CCl3CO). Thermal decomposition was initiated by addition of NO, and relative RO2NO2 concentrations were measured as a function of time by long-path IR absorption using an FTIR spectrometer. First-order decomposition rate constants were determined at atmospheric pressure (M = N2) as a function of temperature and, in the case of CF3C(O)O2NO2 and CCl3C(O)O2NO2, also as a function of total pressure. Extrapolation of the measured rate constants to the temperatures and pressures of the upper troposphere yields thermal lifetimes of several thousands of years for all of these peroxynitrates. Thus, the chloro(fluoro)acetyl peroxynitrates may play a role as temporary reservoirs of Cl, their lifetimes in the upper troposphere being limited by their (unknown) photolysis rates. Results on the thermal decomposition of CClF2CH2O2NO2 and CCl2FCH2O2NO2 are also reported, showing that the atmospheric lifetimes of these peroxynitrates are very short in the lower troposphere and increase to a maximum of several days close to the tropopause. The ratio of the rate constants for the reactions of CF3C(O)O2 radicals with NO2 and NO was determined to be 0.64 ± 0.13 (2σ) at 315 K and a total pressure of 1000 mbar (M = N2). © 1994 John Wiley & Sons, Inc. 相似文献
8.
9.
Howard C. Knachel Vladimir Benin William E. Moddeman Janine C. Birkbeck Thomas A. Kestner Tanya L. Young 《Magnetic resonance in chemistry : MRC》2013,51(7):407-413
The 3M Company product Novec? 71IPA DL, a mixture of methoxyperfluorobutane, methoxyperfluoroisobutane and 4.5 wt.% isopropyl alcohol, has been found to be very stable at ambient temperature, producing fluoride at the rate of ~1 ppm/year. Our earlier kinetic and theoretical studies have identified the reaction mechanism. This paper identifies the 1H and 19F NMR chemical shifts, multiplicities, and coupling constants of reactants and the major products that result from aging the mixture in sealed Pyrex NMR tubes for periods up to 1.8 years at temperatures from 26 °C to 102 °C. Chemical shifts and coupling constants of fluorine and hydrogen atoms on the hydrofluoroethers and isopropyl alcohol are traced through the reactions to their values in the products – esters, isopropylmethyl ether, and HF. These spectral positions, multiplicities, and coupling constants are presented in table format and as figures to clarify the transformations observed as the samples age. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
E. Krentsel S. Fusselman H. Yasuda T. Yasuda M. Miyama 《Journal of polymer science. Part A, Polymer chemistry》1994,32(10):1839-1845
The depth of surface modification by low-temperature cascade arc torch is investigated. A stack of 10 sheets of nonwoven fabrics of polyester fibers is exposed to a low-temperature cascade arc torch containing CF4 or C2F4, and the fluorination effect is examined by ESCA. It is shown that interaction of chemically reactive species, created in a low-temperature cascade arc torch, with the surface is not limited to the surface contacted by the torch (flame). The results indicate that the fluorination effect is observed on surfaces which are shadowed from the torch by overlying fibers. The highest degree of fluorination is found on the second layer, rather than on the first layer which the torch contacts directly. No significant differences in the trends of penetration of CF4 and C2F4 treatment through porous samples are observed. However, ESCA data show principal differences in chemical structures of the surfaces treated with CF4 (nonpolymer-forming gas) and C2F4 (polymer-forming gas). These results indicate that chemically reactive species induced by the excited species of argon rather than primary species created by the ionization process seem to play predominant roles in the surface treatment as well as the low-temperature cascade arc torch polymerization of perfluorinated compounds. © 1994 John Wiley & Sons, Inc. 相似文献
11.
Decken A Jenkins HD Nikiforov GB Passmore J 《Dalton transactions (Cambridge, England : 2003)》2004,(16):2496-2504
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene. 相似文献
12.
Troyanov SI Goryunkov AA Tamm NB Markov VY Ioffe IN Sidorov LN 《Dalton transactions (Cambridge, England : 2003)》2008,(19):2627-2632
A series of novel mixed C60Fn(CF3)m compounds has been produced by trifluoromethylation of C60F18 with CF3I in ampoules at 380-420 degrees C. Two of these compounds, C60F18(CF3)6 and C60F16(CF3)6, have been characterized by X-ray crystallography, which has revealed addition of six CF3 groups to the C3v-C60F18 for the former and replacement/elimination of two outermost F atoms in the latter. Quantum chemical calculations have been employed to predict the most stable possible isomers of C60F16/18(CF3)6 in order to rationalize the experimental results. 相似文献
13.
Raman Spectra of the Iodine (III) Nitrates CF3I(NO3)2, C6H5I(NO3)2, and I(NO3)3 The Raman spectra of the title compounds are recorded and discussed. 相似文献
14.
Kareev IE Quiñones GS Kuvychko IV Khavrel PA Ioffe IN Goldt IV Lebedkin SF Seppelt K Strauss SH Boltalina OV 《Journal of the American Chemical Society》2005,127(32):11497-11504
Milligram amounts of the new compounds 1,9- and 1,7-C60F(CF3) (ca. 85:15 mixture of isomers) and C60F3(CF3) were isolated from a high-temperature C60/K2PtF6 reaction mixture and purified to 98 mol % compositional purity by two-dimensional high-performance liquid chromatography using Buckyprep and Buckyclutcher columns. The previously observed compounds C60F5(CF3) and C60F7(CF3) were also purified to 90+ mol % for the first time. Variable-temperature 19F NMR spectra of the mixture of C60F(CF3) isomers and the previously reported mixture of C(s)- and C1-C60F17(CF3) isomers demonstrate for the first time that fullerene(F)n(CF3)m derivatives with adjacent F and CF3 substituents exhibit slow-exchange limit hindered CF3 rotation spectra at -40 +/- 10 degrees C. The experimental and density functional theory (DFT) predicted deltaH++ values for CF3 rotation in 1,9-C60F(CF3) are 46.8(7) and 46 kJ mol(-1), respectively. The DFT-predicted deltaH++ values for 1,7-C60F(CF3), C(s)-C60F17(CF3), and C1-C60F17(CF3) are 20, 44, and 54 kJ mol(-1), respectively. The (> or = 4)J(FF) values from the slow-exchange-limit 19F spectra, which vary from ca. 0 to 48(1) Hz, show that the dominant nuclear spin-spin coupling mechanism is through-space coupling (i.e., direct overlap of fluorine atom lone-pair orbitals) rather than coupling through the sigma-bond framework. The 2J(FF) values within the CF3 groups vary from 107(1) to 126(1) Hz. Collectively, the NMR data provide an unambiguous set of (> or = 4)J(FF) values for three different compounds that can be correlated with DFT-predicted or X-ray diffraction derived distances and angles and an unambiguous set of 2J(FF) values that can serve as an internal standard for all future J(FF) calculations. 相似文献
15.
16.
Preparation and Spectroscopic Characterization of Perfluoro(isopropyl)-trifluoroacetylperoxide (CF3)2C(F)OOC(O)CF3 The reaction of perfluoroacetone (CF3)2CO with OF2 in a ratio 2 : 1 yields Perfluoro(isopropyl)-trifluoroacetylperoxide (CF3)2C(F)OOC(O)CF3. The reaction only occurs under CsF-catalysis. (CF3)2C(F)OOC(O)CF3 is characterized by vibrational, nmr and mass spectra. Using an excess of OF2 does not give any stable product. 相似文献
17.
18.
19.
[PrAl(CF3COO)2(CF3CHOO)(C2H5)2(C4H8O)2]2 Mr=1420.56, monoclinic, P21/n, a=10.651(6), b=24.276(9), c=11.110(5)(), β=107.650(4)°, V=2737.4(1)()3, Z=2, Dc=3.45 g/cm3, F(000)=2816, T=233K, MoKα radiation (λ=0.71069()), μ(MoKα)=38.017 cm-1, R=0.048 for 2847 observed reflections (I≥3σ(I)). It is isostructural with [LnAl(CF3COO)2(CF3CHOO)-R2(C4H8O)2]2 (Ln=Ho, R=Et; Ln=Nd, Y, R=iBu). Pr3+ is coordinated by eight oxygen atoms from five bridging ligands and two THF forming a distorted bicap-prism. 相似文献
20.
Here we reported a novel and efficient method for the synthesis of the critical intermediates of branched fluorinated surfactants with CF3CF2CF2C (CF3)2- group using HFPD as starting material. The reaction conditions were mild and easy to handle, which was promisingly applied to the industrial production. 相似文献