首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The relative conductivities of solutions of poly(styrene-co-sodium styrene sulfonate) (PSSNa) in N,N-dimethylformamide + water have been measured as functions of temperature and at various concentrations. With the aid of the newly proposed theory related to the effect of solute adsorption on the relative conductivity measurement, the experimental data were analysed, and some interesting parameters describing the interfacial properties were deduced. The concentration of PSSNa data dependence of the reduced electrical conductivities has been fitted to an equation similar to the Vogel–Tammann–Fulcher based on the critical concentration model. The intrinsic electrical conductivity of Vogel [σV], the critical concentration and the concentration of Vogel CVFT were calculated. The behaviour of polymers close to interfaces has been studied with the parameter of [σV]. Two mechanisms of interaction between a polymer solution and a surface are in general distinguished, leading to the formation of adsorbed and grafted layers.  相似文献   

2.
Dense poly(styrene sulfonate sodium salt) brushes were prepared on silicone wafers using a two-step procedure: polystyrene (PS) chains, terminated by a reactive trichlorosilane group, were first covalently grafted, and then the PS brush was converted to a poly(styrene sulfonate) brush by a soft sulfonation reaction. Ellipsometry and infrared spectroscopy in ATR were used to characterize the samples and to optimize the procedure: in particular, the sulfonation was shown to be homogeneous along the chain backbone and the neutralization complete. In some cases, the polymer layer revealed to be quite fragile: the chains were pulled out of the brush. A consolidation treatment which consisted in grafting oligomers inbetween the long PS chains significantly increased the robustness of the layer. This might be relevant for industrial applications.  相似文献   

3.
The storage and loss shear moduli G′ and G″ of dilute solutions of two samples of sodium poly(styrene sulfonate) with molecular weights (M) of 3.28 × 105 have been measured. The Birnboim–Schrag multiple-lumped resonator technique was used in the frequency range 100–8000 Hz, and the intrinsic moduli were obtained by extrapolation to infinite dilution. Measurements were performed over the temperature range from 1.0 to 25.0°C in aqueous solvents containing from 0 to 60% by weight glycerol and from 0.001 to 0.005M added salt. The large intrinsic viscosities indicated high extension of the polymer, and the frequency dependences of G′ and G″ were matched well by hybrid relaxation spectra combining rodlike and coil-like behavior. In a solvent containing 0.001M sodium ion and no glycerol, the end-over-end rotational relaxation times for the two molecular weights corresponded to proportionality to the 1.7 power of M. With increasing molecular weight, ionic strength, and/or glycerol concentration, the polyelectrolyte appeared to become less extended, and its behavior more nearly coil-like.  相似文献   

4.
The amount of counterions in layer-by-layer (LBL) films of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) has been determined with X-ray photoelectron spectroscopy (XPS) for films prepared from solutions with various NaCl concentrations. Sodium and chloride counterions are present in LBL films produced from salt solutions, which are located at the surface and in the bulk of the films. The percentage of bulk counterions increases with the ionic strength of the polyelectrolyte before reaching a constant value. The bulk sodium/sulfur percentage ratios tend to 0.8 for samples washed with pure water and for samples washed with NaCl aqueous solutions, while the bulk chlorine/nitrogen percentage ratios tend to 0.5 for the same samples. The ratio between the percentages of polyelectrolyte ionic groups lies close to unity for all samples, indicating that counterions do not contribute to charge compensation in the polyelectrolyte during the adsorption process. The presence of counterions in LBL films is explained by Manning condensation near the polyelectrolyte ionic groups, leading to inter-polyelectrolyte ionic bondings via ionic networks. It is believed that condensation leads to the formation of NaCl crystallites in these LBL films, which was confirmed by X-ray diffraction measurements.  相似文献   

5.
Neu B  Meiselman HJ  Bäumler H 《Electrophoresis》2002,23(15):2363-2368
The adsorption and depletion of the anionic polymer poly(styrene sulfonate) (PSS) on fresh human red blood cells (RBC) were investigated by measuring RBC electrophoretic mobility as a function of polymer molecular mass (48-2610 kDa), ionic strength (15 and 150 mM NaCl) and polymer concentration (相似文献   

6.
The interactions of cationic gemini surfactants, 1,2-bis(alkyldimethylammonio)ethane dibromide (m-2-m: m is hydrocarbon chain length, m = 10 and 12), and an anionic polymer, sodium poly(styrene sulfonate) (PSS), have been characterized by several techniques such as tensiometry, fluorescence spectroscopy, and dynamic light scattering. The surface tension of gemini surfactant/PSS mixed systems decreases with surfactant concentration, reaching break points, which are taken as critical aggregation concentrations (cac). The surface tension at the cac of mixtures is higher than that of single surfactants, and it is found that at concentrations above the cac, the surfactant molecules are associated with the polymer in the bulk. The 12-2-12/PSS mixed system shows higher surface activity than both 10-2-10/PSS and the monomeric surfactant of dodecyltrimethylammonium bromide/PSS systems. Fluorescence measurements of these mixed systems suggest the formation of a complex with a highly hydrophobic environment in the bulk of the solution. Additionally, dynamic light scattering measurements show that the hydrodynamic diameter of the 12-2-12/PSS mixed system is smaller than that of PSS only at low concentration, indicating interactions between surfactant and polymer. These result from the electrostatic attraction between ammonium and sulfate headgroups as well as the hydrophobic interaction between their hydrocarbon chains.  相似文献   

7.
Sun H  Hu N 《The Analyst》2005,130(1):76-84
In this work, a novel two-step construction strategy for protein layer-by-layer assembly films was proposed. In the first step, positively charged hemoglobin (Hb) or myoglobin (Mb) at pH 5.0 was adsorbed on the negatively charged surface of 500 nm diameter-sized polystyrene (PS) latex beads, forming core-shell structured PS-protein particles. In the next step, the PS-protein particles were further assembled layer by layer with oppositely charged poly(styrene sulfonate)(PSS) on various solid surfaces under suitable conditions. Cyclic voltammetry (CV), quartz crystal microbalance (QCM), and UV-vis spectroscopy were used to monitor the growth of {(PS-protein)/PSS}(n) films. The stable {(PS-protein)/PSS}(n) films modified on pyrolytic graphite (PG) electrodes demonstrated good electroactivity in protein-free buffer, which was originated from protein heme Fe(III)/Fe(II) redox couples, and the electroactivity extended to six (PS-protein)/PSS bilayers. UV-vis spectroscopy showed that Hb and Mb in the films retained their near-native structure in the medium pH range. {(PS-protein)/PSS}(n) films catalyzed electrochemical reduction of oxygen, hydrogen peroxide, trichloroacetic acid (TCA) and nitrite with a significant lowering of overpotential, and displayed better catalytic activity than corresponding cast PS-protein films.  相似文献   

8.
The effect of an added polyanion, sodium poly(styrene sulfonate) (NaPSS), on the thermoreversible gelation and remelting of gelatin gels has been investigated by polarimetry and rheology. The presence of NaPSS can either enhance or reduce collagenlike helix formation, depending on the polymer concentration relative to that of gelatin and the gelation temperature. At temperatures < 20°C, the helical content is reduced by increasing the amount of added NaPSS, demonstrating the disruption of helical structure of gelatin by the polyanion. Synchronous measurements of optical rotation and modulus at 25°C, in both gelation and remelting, indicate that the optical rotation at the gel point for the pure gelatin is lowered on addition of NaPSS. At low frequency, the storage modulus of gelatin is increased by the addition of a small amount of NaPSS relative to that of gelatin, but decreased with excess NaPSS. The mechanical properties of gelatin with and without NaPSS will be discussed in light of the competition between network junction formation by strands of triple helices among gelatin chains and temporary ionic crosslinking between gelatin and the polyanion. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2287–2295, 1999  相似文献   

9.
Understanding formation mechanisms of hybrids of carbon nanotubes (CNTs) wrapped by polymers and their interactions is critical in modifying solubility of CNTs in aqueous solution and developing new nanotube-based polymer materials. In the present work, we investigate the structural details of poly(styrene-co-sodium styrene sulfonate) (PSS) wrapping around the CNT and the interactions between the PSS chain and the CNT using molecular dynamics (MD) simulations. The fraction of sulfonated groups significantly influences the wrapping conformations of the PSS chain. Due to limited time scale in the MD simulations, two different initial conformations of the chains are introduced to explore the effect of the initial state on the wrapping behavior. When the chains initially wrap around the CNT in a perfect helix manner, more compact pseudo-helical conformations are obtained. For initial straight line arrangement of the chain monomers, the chains adopt looser wrapping conformations. The free-energy analysis and binding interaction of the PSS chain on the CNT surface take a glance on the relationship between the conformational transition of the chain and the energy evolution.  相似文献   

10.
Solid-contact (SC) ion-selective electrodes (ISEs) utilizing thin films of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and plasticized poly(vinylchloride) (PVC) have been produced using a spin casting procedure. This study was carried out with a view of characterizing this popular and well known SC ISE using a series of complementary surface analysis techniques. This work revealed that PEDOT:PSS prevents the separation of an undesirable water layer at the buried interface of this SC ISE due to the high miscibility of water in the hydrophilic PEDOT:PSS layer. The lack of a clearly defined and molecularly sharp buried interface prohibits the formation of a distinct water layer presumably by eliminating sites that promote the accumulation of water. This outcome is important to the chemical sensor community since it provides further insights into the compatibility of sensor components in SC ISEs.  相似文献   

11.
The interaction between poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and cellulosic fibers was characterized in order to obtain further understanding of the conductivity properties of the modified cellulosic fiber material. Microcrystalline cellulose (MCC) was used as a model surface to study the adsorption behavior at various pH and salt concentrations, while samples of low-conductivity paper, normally used for the production of electrical insulation papers, were dipped into PEDOT:PSS dispersion and air-dried for X-ray photoelectron spectroscopy (XPS) studies. The results showed a strong interaction between the MCC and PEDOT:PSS, which implied a broad molecular distribution of the conducting polymer. With increasing pH, less amount of the conducting polymer was adsorbed whereas the amount adsorbed passed through a maximum value with varying salt concentration. Zeta potential measurement and polyelectrolyte titration were used to determine the surface charge of both suspended MCC particles and dispersed PEDOT:PSS at various pH levels and salt concentrations. Dip-coated paper samples exhibited two peaks in the S(2p) XPS spectra at 168–169 and 164–165 eV which correspond to the sulfur signals of sulfonate (in PSS) and in thiophene (in PEDOT), respectively. It was found that the PEDOT:PSS with a ratio of 1:2.5 was adsorbed more in the base paper than that with a ratio of 1:6. The PEDOT:PSS ratio on the surface of the cellulosic material was higher than that in the bulk liquid for all samples. The results indicated that PEDOT was preferentially adsorbed rather than PSS. The degree of washing of the conducting polymer did not significantly affect the PEDOT enhancement on the surface.  相似文献   

12.
The swelling behavior of acid form poly(styrene sulfonate) (PSS‐H) thin films were investigated using in situ spectroscopic ellipsometry (SE) to probe the polymer–solvent interactions of ion‐containing polymers under interfacial confinement. The interaction parameter (χ), related to the polymer and solvent solubility parameters in the Flory–Huggins theory, describes the polymer‐solvent compatibility. In situ SE was used to measure the degree of polymer swelling in various solvent vapor environments, to determine χ for the solvent‐PSS‐H system. The calculated solubility parameter of 40–44 MPa1/2 for PSS‐H was determined through measured χ values in water, methanol, and formamide environments at a solvent vapor activity of 0.95. Flory–Huggins theory was applied to describe the thickness‐dependent swelling of PSS‐H and to quantify the water‐PSS‐H interactions. Confinement had a significant influence on polymer swelling at low water vapor activities expressed as an increased χ between the water and polymer with decreasing film thickness. As the volume fraction of water approached ~0.3, the measured χ value was ~0.65, indicating the water interacted with the polymer in a similar manner, regardless of thicknesses. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1365–1372  相似文献   

13.
Fifteen samples of sodium poly(styrene sulfonate) with weight‐average molecular weights of 3 × 104 to 8 × 105 have been studied by static and dynamic light scattering and viscometry in 0.05 and 0.5 M aqueous NaCl at 25 °C. The measured radii of gyration, translational diffusion coefficients, and intrinsic viscosities at the lower salt concentration exhibit molecular weight dependencies stronger than those predictable for uncharged flexible chains in the good solvent limit. These data and those at the higher NaCl concentration are analyzed, along with previous intrinsic viscosity data covering a broad molecular weight range, in the framework of the quasi‐two‐parameter (QTP) theory with the wormlike chain as the model. It is shown that the relevant theories for the expansion factors in the QTP scheme combined with these theories for the unperturbed wormlike chain are capable of describing the experimental data with a degree of accuracy similar to that known for nonionic flexible polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2728–2735, 2002  相似文献   

14.
15.
Simultaneous spraying of two solutions of interacting species onto a substrate held vertically leads to the formation of nanometer-sized coatings. Here we investigate the simultaneous spraying of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) solutions leading to the formation of a film composed of PSS/PAH complexes. The thickness of this film increases linearly with the cumulative spraying time. For a given spraying rate of PAH (respectively PSS), the growth rate of the film depends strongly upon the PSS/PAH ratio and passes through a maximum for a PSS/PAH ratio lying between 0.55 and 0.8. For a PSS/PAH ratio that is maintained constant, the growth speed of the film increases linearly with the spraying rate of polyelectrolyte of both solutions. Using X-ray photoelectron spectroscopy, we find that the film composition is almost independent of the PSS/PAH (spayed) ratio, with composition very close to 1:1 in PSS:PAH film. The 1:1 PSS:PAH composition is explained by the fact that the simultaneous spraying experiments are carried out with salt-free solutions; thus, electroneutrality in the film requires exact matching of the charges carried by the polyanions and the polycations. Zeta potential measurements reveal that, depending on whether the PSS/PAH spraying rate ratio lies below or above the optimal spraying rate ratio, the film acquires a positive or a negative excess charge. We also find that the overall film morphology, investigated by AFM, is independent of the spraying rate ratio and appears to be composed of nanometer-sized grains which are typically in the 100 nm range.  相似文献   

16.
Tandem mass spectrometry of poly(styrene sulfonate sodium salt) (PSS) was performed after activated electron photo-detachment dissociation (activated EPD). In this technique, doubly charged PSS oligomers were first produced in negative mode electrospray ionization, then oxidized into radical anions upon electron photo-detachment using a 220 nm laser wavelength, and further activated by collision. In contrast to the collision-induced dissociation (CID) of negatively charged PSS oligomers, which does not provide informative data with regard to the end-groups, activated-EPD is shown here to promote radical-induced dissociation reactions thanks to the oxidation of a sulfonate group upon laser irradiation. Major product ions generated after backbone bond cleavages contained one or the other chain terminations and could be accounted for by two main mechanisms. Moreover, each of the proposed dissociation reactions was shown to generate two distinct fragments, depending on the location of the oxidized monomer near one or the other chain terminal moieties. As a result, a combination of these two fragments allowed a straightforward mass characterization of each end-group.  相似文献   

17.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   

18.
A series of novel poly(aryl ether sulfone)s (PAESs) were prepared from bis(4-chlorophenyl) sulfone and various bisphenol monomers via nucleophilic aromatic substitution polycondensation. The polycondensation proceeded quantitatively in N,N-dimethylacetamide and afforded PAESs with inherent viscosities of 0.62–0.81 dL/g. The obtained PAESs showed high-glass transition temperatures beyond 177°C and excellent thermal stability with 10% weight loss temperatures in the range of 541–571°C. The PAESs 2a–c could dissolve readily in common organic solvents and their solubility was improved by the introduction of bulky pendant groups. The PAESs formed transparent, strong and flexible films, with tensile strengths of 88.1–98.7 MPa, Young modulus of 3.14–3.52 GPa, and elongation at break of 18–34%. Furthermore, the resulting PAES films showed low dielectric constants (2.77–3.02 at 1 MHz) and low water absorption (0.51–0.83%).  相似文献   

19.
Alternate multiple adsorbed layers of up to six macrocations [poly(4-vinyl-N-n-butyl-pyridinium bromide)] and macroanions [sodium poly(styrene sulfonate)] are formed on monodispersed polystyrene colloidal spheres above the critical concentration of the macroions, m *. The m * value is the minimum number of macroions needed to reverse the sign of the ζ potential of the spheres in the first adsorption step. Alternate sign reversal in the ζ potential and expansive–contractive thickness changes are observed on the repeated and alternate addition of macrocations first and macroanions next. When the macroanions are added first, sign reversal in the ζ potential and reversible expansion and contraction do not occur. Breaking of the alternate multiple-type adsorption also occurs when equivalency in the number of dissociative groups of macrocations and macroanions is broken. Synchronous conformational changes of macrocations and macroanions in the multiple-adsorbed layers occurs only when the conformational rigidities with the multiple electrostatic and hydrophobic attraction and/or repulsion between macrocations and macroanions are delicately balanced. Received: 12 August 1999/Accepted in revised form: 18 November 1999  相似文献   

20.
Three cationic surfactants carrying a common hydrocarbon tail (dodecyl group) interact differently with fully ionized poly(L-glutamic acid)(PGA), depending on the type of their ionic head groups. Decrease of pH occurred in the order; dodecylammonium chloride (DAC) > dodecyldimethylammonium chloride (DDAC) > dodecyltrimethylammonium chloride (DTAC). The-helix of PGA was strongly induced by the addition of DAC and DDAC but weakly by DTAC. The induction was inhibited when NaCl concentration was greater than 0.05 M. In the solid state, proton transfer through hydrogen bonds from ionic heads of DDAC to carboxylate groups of the polypeptide was observed. Distortion of circular dichroism spectra occurred at high mixing ratios of surfactant to polymer, due to the aggregation of-helices, as confirmed by light scattering measurements and infrared absorption spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号