共查询到17条相似文献,搜索用时 62 毫秒
1.
本文考虑了纵向数据线性EV模型的变量选择.基于二次推断函数方法和压缩方法的思想提出了一种新的偏差校正的变量选择方法.在选择适当的调整参数下,我们证明了所得到的估计量的相合性和渐近正态性.最后通过模拟研究验证了所提出的变量选择方法的有限样本性质. 相似文献
2.
在多元线性回归中,变量选择紧密依赖模型,与影响数据密切相关。本文从模型扰动的角度,研究了变量选择与数据的关系,用微分几何中的概念,提出了用曲线的变化率、加速率及其曲率三种量测,去评价数据对变量选择的影响,从而诊断影响数据。文中给出的数值例子表明,所提影响量测,对于诊断数据对变量选择的影响是有效的。 相似文献
3.
在响应变量带有单调缺失的情形下考虑高维纵向线性回归模型的变量选择.主要基于逆概率加权广义估计方程提出了一种自动的变量选择方法,该方法不使用现有的惩罚函数,不涉及惩罚函数非凸最优化的问题,并且可以自动地剔除零回归系数,同时得到非零回归系数的估计.在一定正则条件下,证明了该变量选择方法具有Oracle性质.最后,通过模拟研究验证了所提出方法的有限样本性质. 相似文献
4.
广义估计方程(GEE)是分析纵向数据下响应变量是离散的或非负的回归问题常用方法.本文研究了高维GEE的变量选择,在更弱的条件下证明了相关阵(或协方差)假定不一定正确,只要均值函数假定正确,模型选择是相合的,得到了变量选择的Oracle性质.改进了WANG(2011)和WANG,ZHOU,QU(2012)的结果. 相似文献
5.
6.
广义估计方程(GEE)是分析纵向数据的常用方法.Balan,Schiopu-Kratina(2005)研究了协变量维数固定,GEE估计的渐近正态性.WANG(2011)研究了协变量维数趋于无穷,GEE估计的渐近正态性和响应变量是两点分布Wald统计量的渐近分布.本文证明协变量维数是固定的或趋于无穷,响应变量是任意分布的Wald统计量的渐近分布是卡方分布,Wald统计量可以直接用于统计推断. 相似文献
7.
本文研究纵向数据下半参数工具变量模型中回归系数的区间估计问题.首先利用B-样条方法逼近半参数模型中的非参数函数.为了处理内生变量和纵向数据的组内相关性,对模型中回归系数提出了基于工具变量和二次推断函数的有效经验对数似然比统计量,并证明所提出统计量渐近服从标准卡方分布,由此构造回归系数的置信域. 相似文献
8.
在广义估计方程框架下,发展了一类灵活的回归模型来参数化协方差结构.通过合并广泛使用的修正的Cholesky分解和滑动平均Cholesky分解,得到自回归滑动平均Cholesky分解.该分解能够参数化更一般的协方差结构,且其输入具有清晰的统计解释.对这些输入建立回归模型,并利用拟Fisher迭代算法估计回归系数.均值和协方差模型中的参数估计皆具有相合性和渐近正态性.最后通过模拟研究考察了所提方法的有限样本表现. 相似文献
9.
10.
高维数据变量选择方法综述 总被引:2,自引:0,他引:2
变量选择是统计学知识结构中不可或缺的一部分。本文归纳梳理了近二十年多来的变量选择方法,着重介绍了处理高维数据以及超高维数据的变量选择方法。最后我们通过一个实例比较了不同变量选择方法的差异性。 相似文献
11.
Danjie Zhang Ming-Hui Chen Joseph G. Ibrahim Mark E. Boye Wei Shen 《Journal of computational and graphical statistics》2017,26(1):121-133
Joint models for longitudinal and survival data are routinely used in clinical trials or other studies to assess a treatment effect while accounting for longitudinal measures such as patient-reported outcomes. In the Bayesian framework, the deviance information criterion (DIC) and the logarithm of the pseudo-marginal likelihood (LPML) are two well-known Bayesian criteria for comparing joint models. However, these criteria do not provide separate assessments of each component of the joint model. In this article, we develop a novel decomposition of DIC and LPML to assess the fit of the longitudinal and survival components of the joint model, separately. Based on this decomposition, we then propose new Bayesian model assessment criteria, namely, ΔDIC and ΔLPML, to determine the importance and contribution of the longitudinal (survival) data to the model fit of the survival (longitudinal) data. Moreover, we develop an efficient Monte Carlo method for computing the conditional predictive ordinate statistics in the joint modeling setting. A simulation study is conducted to examine the empirical performance of the proposed criteria and the proposed methodology is further applied to a case study in mesothelioma. Supplementary materials for this article are available online. 相似文献
12.
??In this paper, we propose a joint mean-variance-correlation modeling
approach for longitudinal studies. By applying partial autocorrelations, we obtain an
unconstrained parametrization for the correlation matrix that automatically guarantees its
positive definiteness, and develop a regression approach to model the correlation matrix
of the longitudinal measurements by exploiting the parametrization. The proposed modeling
framework is parsimonious, interpretable, and flexible for analyzing longitudinal data. Real
data example and simulation support the effectiveness of the proposed approach. 相似文献
13.
In this article, we propose an unbiased estimating equation approach for a two-component mixture model with correlated response data. We adapt the mixture-of-experts model and a generalized linear model for component distribution and mixing proportion, respectively. The new approach only requires marginal distributions of both component densities and latent variables. We use serial correlations from subjects’ subgroup memberships, which improves estimation efficiency and classification accuracy, and show that estimation consistency does not depend on the choice of the working correlation matrix. The proposed estimating equation is solved by an expectation-estimating-equation (EEE) algorithm. In the E-step of the EEE algorithm, we propose a joint imputation based on the conditional linear property for the multivariate Bernoulli distribution. In addition, we establish asymptotic properties for the proposed estimators and the convergence property using the EEE algorithm. Our method is compared to an existing competitive mixture model approach in both simulation studies and an election data application. Supplementary materials for this article are available online. 相似文献
14.
Tree-structured models have been widely used because they function as interpretable prediction models that offer easy data visualization. A number of tree algorithms have been developed for univariate response data and can be extended to analyze multivariate response data. We propose a tree algorithm by combining the merits of a tree-based model and a mixed-effects model for longitudinal data. We alleviate variable selection bias through residual analysis, which is used to solve problems that exhaustive search approaches suffer from, such as undue preference to split variables with more possible splits, expensive computational cost, and end-cut preference. Most importantly, our tree algorithm discovers trends over time on each of the subspaces from recursive partitioning, while other tree algorithms predict responses. We investigate the performance of our algorithm with both simulation and real data studies. We also develop an R package melt that can be used conveniently and freely. Additional results are provided as online supplementary material. 相似文献
15.
16.
多数基于线性混合效应模型的变量选择方法分阶段对固定效应和随机效应进行选择,方法繁琐、易产生模型偏差,且大部分非参数和半参数的线性混合效应模型只涉及非参数部分的光滑度或者固定效应的选择,并未涉及非参变量或随机效应的选择。本文用B样条函数逼近非参数函数部分,从而把半参数线性混合效应模型转化为带逼近误差的线性混合效应模型。对随机效应的协方差矩阵采用改进的乔里斯基分解并重新参数化线性混合效应模型,接着对该模型的极大似然函数施加集群ALASSO惩罚和ALASSO惩罚两类惩罚,该法能实现非参数变量、固定效应和随机效应的联合变量选择,基于该法得出的估计量也满足相合性、稀疏性和Oracle性质。文章最后做了个数值模拟,模拟结果表明,本文提出的估计方法在变量选择的准确性、参数估计的精度两个方面均表现较好。 相似文献