首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrafast fluorescence resonance energy transfer (FRET) from coumarin 153 (C153) to rhodamine 6G (R6G) is studied in a neutral PEO(20)-PPO(70)-PEO(20) triblock copolymer (P123) micelle and an anionic micelle (sodium dodecyl sulfate, SDS) using a femtosecond up-conversion setup. Time constants of FRET were determined from the rise time of the acceptor emission. It is shown that a micelle increases efficiency of FRET by holding the donor and the acceptor at a close distance (intramicellar FRET) and also by tuning the donor and acceptor energies. It is demonstrated that in the P123 micelle, intramicellar FRET (i.e., donor and acceptor in same micelle) occurs in 1.2 and 24 ps. In SDS micelle, there are two ultrafast components (0.7 and 13 ps) corresponding to intramicellar FRET. The role of diffusion is found to be minor in the ultrafast components of FRET. We also detected a much longer component (1000 ps) for intramicellar FRET in the larger P123 micelle.  相似文献   

2.
The objective of this work was to gain a better understanding of the mechanism of resistance to protein adsorption of surfaces grafted with poly(ethylene oxide) (PEO). A polyurethane-urea was used as a substrate to which PEO was grafted. Grafting was carried out by introducing isocyanate groups into the surface followed by reaction with amino-terminated PEO. Surfaces grafted with PEO of various chain lengths (PUU-NPEO) were prepared and characterized by water contact angle and X-ray photoelectron spectroscopy (XPS). XPS data indicated higher graft densities on the PUU-NPEO surfaces than on analogous surfaces prepared using hydroxy-PEO (PUU-OPEO) as reported previously [J.G. Archambault, J.L. Brash, Colloids Surf. B: Biointerf. 33 (2004) 111-120]. Protein adsorption experiments using radiolabeled myoglobin, concanavalin A, albumin, fibrinogen and ferritin as single proteins in buffer showed that adsorption was reduced on the PEO-grafted surfaces by up to 95% compared to the control. Adsorption decreased with increasing PEO chain length and reached a minimum at a PEO MW of 2000. Adsorption levels on surfaces with 5000 and 2000 MW grafts were similar. There was no clear effect of protein size on resistance to protein adsorption. Adsorption on the PUU-NPEO surfaces was significantly lower than on the corresponding PUU-OPEO surfaces, again suggesting higher graft densities on the former. Adsorption of fibrinogen from plasma was also greatly reduced on the grafted surfaces. From analysis (SDS-PAGE, immunoblotting) of the proteins eluted after plasma exposure, it was found that the grafted surfaces and the unmodified substrate adsorbed the same proteins in roughly the same proportions, suggesting that adsorption to the PEO surfaces occurs on patches of bare substrate. The PEO grafts did not apparently cause differential access to the substrate based on protein size.  相似文献   

3.
A ratiometric measurement, namely, simultaneous recording of the fluorescence intensities at two wavelengths and calculation of their ratio, allows greater precision than measurements at a single wavelength, and is suitable for cellular imaging studies. Here we describe a novel method of designing probes for ratiometric measurement of hydrolytic enzyme activity based on switching of fluorescence resonance energy transfer (FRET). This method employs fluorescent probes with a 3'-O,6'-O-protected fluorescein acceptor linked to a coumarin donor through a linker moiety. As there is no spectral overlap integral between the coumarin emission and fluorescein absorption, the fluorescein moiety cannot accept the excitation energy of the donor moiety and the donor fluorescence can be observed. After cleavage of the protective groups by hydrolytic enzymes, the fluorescein moiety shows a strong absorption in the coumarin emission region, and then acceptor fluorescence due to FRET is observed. Based on this mechanism, we have developed novel ratiometric fluorescent probes (1-3) for protein tyrosine phosphatase (PTP) activity. They exhibit a large shift in their emission wavelength after reaction with PTPs. The fluorescence quenching problem that usually occurs with FRET probes is overcome by using the coumarin-cyclohexane-fluorescein FRET cassette moiety, in which close contact of the two dyes is hindered. After study of their chemical and kinetic properties, we have concluded that compounds 1 and 2 bearing a rigid cyclohexane linker are practically useful for the ratiometric measurement of PTPs activity. The design concept described in this paper, using FRET switching by spectral overlap integral and a rigid link that prevents close contact of the two dyes, should also be applicable to other hydrolytic enzymes by introducing other appropriate enzyme-cleavable groups into the fluorescein acceptor.  相似文献   

4.
Proteins are highly complex biopolymers, exhibiting a substantial degree of structural variability in their properly folded, native state. In the presence of denaturants, this heterogeneity is greatly enhanced, and fluctuations take place among vast numbers of folded and unfolded conformations via many different pathways. To better understand protein folding it is necessary to explore the structural and energetic properties of the folded and unfolded polypeptide chain, as well as the trajectories along which the chain navigates through its multi-dimensional conformational energy landscape. In recent years, single-molecule fluorescence spectroscopy has been established as a powerful tool in this research area, as it allows one to monitor the structure and dynamics of individual polypeptide chains in real time with atomic scale resolution using F?rster resonance energy transfer (FRET). Consequently, time trajectories of folding transitions can be directly observed, including transient intermediates that may exist along these pathways. Here we illustrate the power of single-molecule fluorescence with our recent work on the structure and dynamics of the small enzyme RNase H in the presence of the chemical denaturant guanidinium chloride (GdmCl). For FRET analysis, a pair of fluorescent dyes was attached to the enzyme at specific locations. In order to observe conformational changes of individual protein molecules for up to several hundred seconds, the proteins were immobilized on nanostructured, polymer coated glass surfaces specially developed to have negligible interactions with folded and unfolded proteins. The single-molecule FRET analysis gave insight into structural changes of the unfolded polypeptide chain in response to varying the denaturant concentration, and the time traces revealed stepwise transitions in the FRET levels, reflecting conformational dynamics. Barriers in the free energy landscape of RNase H were estimated from the kinetics of the transitions.  相似文献   

5.
Polyurethane (PU) was modified using isocyanate chemistry to graft polyethylene oxide (PEO) of various molecular weights (range 300-4600). An antithrombin-heparin (ATH) covalent complex was subsequently attached to the free PEO chain ends, which had been functionalized with N-hydroxysuccinimide (NHS) groups. Surfaces were characterized by water contact angle and X-ray photoelectron spectroscopy (XPS) to confirm the modifications. Adsorption of fibrinogen from buffer was found to decrease by ~80% for the PEO-modified surfaces compared to the unmodified PU. The surfaces with ATH attached to the distal chain end of the grafted PEO were equally protein resistant, and when the data were normalized to the ATH surface density, PEO in the lower MW range showed greater protein resistance. Western blots of proteins eluted from the surfaces after plasma contact confirmed these trends. The uptake of ATH on the PEO-modified surfaces was greatest for the PEO of lower MW (300 and 600), and antithrombin binding from plasma (an indicator of heparin anticoagulant activity) was highest for these same surfaces. The PEO-ATH- and PEO-modified surfaces also showed low platelet adhesion from flowing whole blood. It is concluded that for the PEO-ATH surfaces, PEO in the low MW range, specifically MW 600, may be optimal for achieving an appropriate balance between resistance to nonspecific protein adsorption and the ability to take up ATH and bind antithrombin in subsequent blood contact.  相似文献   

6.
Most methods developed to study protein binding to distinct surfaces can only determine the average amount of adsorbed protein or merely provide (qualitative) information on its spatial distribution. Both these features can be characterized rigorously by integral geometry analysis of fluorescence micrographs. This approach is introduced here to compare the relative protein adsorption onto various polymer surfaces: polystyrene (PS), poly(methyl methacrylate) (PMMA), poly( n-butyl methacrylate) (PnBMA), poly( tert-butyl methacrylate) (PtBMA), and PS(PETA) and cross-linked poly(ethylene oxide) (PEO*(PETA)), admixed with pentaerythritol triacrylate (PETA). The polymeric surfaces were incubated for 15 min in phosphate-buffered saline (pH 7.4) containing 125 mug/mL fluorescently labeled lectins, either lentil lectin (LcH) or concanavalin A (ConA). Fluorescence images were recorded at identical conditions (physiological buffer, same exposure time, magnification, gain). For each image, taken a few times for each polymer, the distribution and average value of the normalized intensity were determined. The results show that the binding of LcH to PS(PETA), PtBMA, PS, PnBMA, PMMA, and PEO*(PETA) can be expressed by the ratio of the following values (mean +/- 95% confidence interval): 0.356 +/- 0.022, 0.298 +/- 0.030, 0.241 +/- 0.014, 0.083 +/- 0.008, 0.039 +/- 0.008, and 0.010 +/- 0.006, respectively. In turn, the relative adsorption of ConA is described by the values 0.252 +/- 0.016, 0.217 +/- 0.014, 0.222 +/- 0.016, 0.046 +/- 0.006, 0.116 +/- 0.008, and 0.006 +/- 0.002, respectively. Low dispersions of fluorescence intensity around average values indicate homogeneous distribution of adsorbed proteins. The introduced approach enables a fast and easy way not only to quantify the relative amount of bound proteins but also to characterize quantitatively the organization of their surface distribution, as demonstrated for patchlike protein adsorption onto the polymer blend surface.  相似文献   

7.
A photokinetic method of detection of fluorescence resonance energy transfer (FRET) between special fluorescent labels is applied to study time-averaged spatial distribution of labeled proteins in protein assemblies. Prolonged irradiation of a sample at the absorption maximum of the energy donor initiates FRET-sensitized fluorescence photobleaching of the energy acceptor label, which was monitored by steady-state fluorimetric measurements. Kinetics of the acceptor photobleaching and kinetics of decreasing the efficiency of FRET from donors to unbleached acceptors were determined. The FRET efficiency was found from measuring sensitization of acceptor fluorescence. Analysis of the photokinetic data permits to estimate the time-averaged distribution of acceptors on donor-acceptor distances in the range of characteristic distances of FRET. Dynamic processes influencing donor-acceptor distances can be also investigated by the method. Application of the method is demonstrated by the studies of a complex of biotinylated IgM with streptavidin and aggregates composed of concanavalin A and sodium dodecyl sulphate. A new thiadicarbocyanine dye was used as the acceptor label. R-phycoerythrin and tetramethylrhodamine isothiocyanate were the donor labels. In the IgM-streptavidin complex, 16% of acceptors most contributed to FRET provided 90% of FRET efficiency, whereas acceptors made about the same time-averaged contribution to FRET in the concanavalin A aggregates.  相似文献   

8.
Nonspecific protein adsorption generally occurs at the biomaterial-tissue interface and usually has adverse consequences. Thus, surfaces that are protein-resistant are eagerly sought with the expectation that these materials will exhibit improved biocompatibility. Surfaces modified with end-tethered poly(ethylene oxide) (PEO) have been shown to be protein-resistant to some degree. Although the mechanisms are unclear, it has been suggested that chain length, chain density, and chain conformation are important factors. To investigate the effects of PEO chain density, we selected a model system based on the chemisorption of chain-end thiolated PEO to a gold substrate. Chain density was varied by varying PEO solubility (proximity to cloud point) and incubation time in the chemisorption solution. The adsorption of fibrinogen and lysozyme to these surfaces was investigated. It was found that for 750 and 2000 MW PEO layers, resistance to fibrinogen increased with chain density and was maximal at a density of approximately 0.5 chains/nm(2) (80% decrease in adsorption compared to unmodified gold). As PEO chain density increased beyond 0.5/nm(2) adsorption increased. For PEO of 5000 MW the optimal chain density was 0.27/nm(2) and gave only a 60% reduction in fibrinogen adsorption. It is suggested that, at high chain density, the chemisorbed PEO is dehydrated giving a surface that is no longer protein resistant. The PEO-modified surfaces were found also to be resistant to lysozyme adsorption with reductions similar to, if somewhat less than, those for fibrinogen. The fibrinogen to lysozyme molar ratios were within the expected range for close-packed layers of these proteins in their native conformation and were relatively insensitive to PEO chain density and MW. This may suggest that such adsorption as did occur, even at chain densities giving minimum adsorption, may have been on patches of unmodified gold.  相似文献   

9.
The interaction of the proteins bovine serum albumin (BSA), lysozyme (Lys), lactoferrin (Lf), and fibronectin (Fn) with surfaces of protein-resistant poly(ethylene oxide) (PEO) and protein-adsorbing poly(acrylic acid) (PAA) fabricated by plasma-enhanced chemical vapor deposition has been studied with quartz crystal microbalance with dissipation monitoring (QCM-D). We focus on several parameters which are crucial for protein adsorption, i.e., the isoelectric point (pI) of the proteins, the pH of the solution, and the charge density of the sorbent surfaces, with the zeta-potential as a measure for the latter. The measurements reveal adsorption stages characterized by different segments in the plots of the dissipation vs frequency change. PEO remains protein-repellent for BSA, Lys, and Lf at pH 4-8.5, while weak adsorption of Fn was observed. On PAA, different stages of protein adsorption processes could be distinguished under most experimental conditions. BSA, Lys, Lf, and Fn generally exhibit a rapid initial adsorption phase on PAA, often followed by slower processes. The evaluation of the adsorption kinetics also reveals different adsorption stages, whereas the number of these stages does not always correspond to the structurally different phases as revealed by the D- f plots. The results presented here, together with information obtained in previous studies by other groups on the properties of these proteins and their interaction with surfaces, allow us to develop an adsorption scenario for each of these proteins, which takes into account electrostatic protein-surface and protein-protein interaction, but also the pH-dependent properties of the proteins, such as shape and exposure of specific domains.  相似文献   

10.
Fluorescence resonance energy transfer (FRET) is a distance-sensitive method that correlates changes in fluorescence intensity with conformational changes, for example, of biomolecules in the cellular environment. Applied to the gas phase in combination with Fourier transform ion cyclotron resonance mass spectrometry, it opens up possibilities to define structural/conformational properties of molecular ions, in the absence of solvent, and without the need for purification of the sample. For successfully observing FRET in the gas phase it is important to find suitable fluorophores. In this study several fluorescent dyes were examined, and the correlation between solution-phase and gas-phase fluorescence data were studied. For the first time, FRET in the gas phase is demonstrated unambiguously.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) from coumarin 480 (C480) to rhodamine 6G (R6G) is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123 (P123)) by picosecond and femtosecond emission spectroscopy. The time constants of FRET were obtained from the rise time of the acceptor (R6G) emission. In a P123 micelle, FRET occurs in multiple time scales: 2.5, 100, and 1700 ps. In the gel phase, three rise components are observed: 3, 150, and 2600 ps. According to a simple F?rster model, the ultrafast (2.5 and 3 ps) components of FRET correspond to donor-acceptor distance RDA=13 +/- 2 A. The ultrafast FRET occurs between a donor and an acceptor residing at close contact at the corona (PEO) region of a P123 micelle. With increase in the excitation wavelength (lambdaex) from 375 to 435 nm, the relative contribution of the ultrafast component of FRET ( approximately 3 ps) increases from 13% to 100% in P123 micelle and from 1% to 100% in P123 gel. It is suggested that at lambdaex = 435 nm, mainly the highly polar peripheral region is probed where FRET is very fast due to close proximity of the donor and the acceptor. The 100 and 150 ps components correspond to RDA = 25 +/- 2 A and are ascribed to FRET from C480 deep inside the micelle to an acceptor (R6G) in the peripheral region. The very long component of FRET (1700 ps in micelle and 2600 ps component in gel) may arise from diffusion of the donor from outside the micelle to the interior followed by fast FRET.  相似文献   

12.
Fluorescence quenching methods are useful to obtain information about the conformational and/or dynamic changes of proteins in complex macromolecular systems. In this review steady-state methods are described and the data interpretation is thoroughly discussed. As a special case of fluorescence quenching mechanism, fluorescence resonance energy transfer (FRET) phenomenon is also presented. Application of a FRET based method to characterize the temperature dependence of the flexibility of protein matrix is clearly demonstrated.  相似文献   

13.
A novel series of pyrene dendronized porphyrins bearing two and four pyrenyl groups (Py(2)-TMEG1 and Py(4)-TMEG2) were successfully synthesized. First and second generation Fréchet type dendrons (Py(2)-G1OH and Py(4)-G2OH) were prepared from 1-pyrenylbutanol and 3,5-dihydroxybenzyl alcohol. These compounds were further linked to a trimesitylphenylporphyrin containing a butyric acid spacer via an esterification reaction to obtain the desired products. Dendrons and dendronized porphyrins were fully characterized by FTIR and (1)H NMR spectroscopy and their molecular weights were determined by matrix-assisted laser desorption ionization time of flight mass spectrometry. Their optical and photophysical properties were studied by absorption and fluorescence spectroscopies. The formation of dynamic excimers was detected in the pyrene-labeled dendrons, with more excimer being produced in the higher generation dendron. The fluorescence spectra of the pyrene dendronized porphyrins exhibited a significant decrease in the amount of pyrene monomer and excimer emission, jointly with the appearance of a new emission band at 661 nm characteristic of porphyrin emission, an indication that fluorescence resonance energy transfer (FRET) occurred from one of the excited pyrene species to the porphyrin. The FRET efficiency was found to be almost quantitative ranging between 97% and 99% depending on the construct. Model Free analysis of the fluorescence decays acquired with the pyrene monomer, excimer, and porphyrin core established that only residual pyrene excimer formation in the dendrons could occur before FRET from the excited pyrene monomer to the ground-state porphyrin core.  相似文献   

14.
A method has been developed for the quantitative determination of fluorescence resonance energy transfer (FRET) based on the modulation of donor fluorescence upon the reversible photoconversion of a photochromic acceptor. A model system was devised, consisting of Lucifer Yellow cadaverine (LYC, donor) conjugated to the photochromic molecule, 6-nitroBIPS (1′,3′-dihydro-1′-(2-carboxyethyl)-3′,3′-dimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-(2H)-indoline]). Near-ultraviolet irradiation catalyzes the conversion of the colorless spiropyran (SP) to the colored merocyanine (MC) form of 6-nitroBIPS. Only the MC form absorbs at the emission wavelengths of the donor, thereby potentiating FRET, as demonstrated by quenching of the donor. Subsequent irradiation in the visible MC absorption band reverts 6-nitroBIPS to the SP form and FRET is inactivated. The acceptor exhibited high photostability under repeated cycles of alternating UV–Vis irradiation. In this model system, the intramolecular FRET efficiency was close to 100%. The observed maximal donor quenching of 34±3% was indicative of an equilibrium determined by the high quantum efficiency of forward conversion (SP→MC) induced by near-UV irradiation and a low but finite quantum efficiency of the back reaction resulting from excitation of the MC form directly as well as indirectly (by FRET via the donor). A quantitative formalism for the photokinetic scheme was developed. Photochromic FRET (pcFRET) permits repeated, quantitative, and non-destructive FRET determinations for arbitrary relative concentrations of donor and acceptor and thus offers great potential for monitoring dynamic molecular interactions in living cells over extended observation times by fluorescence microscopy.  相似文献   

15.
Peptide Nucleic Acids (PNAs) linked to high molecular weight (MW) poly(ethylene oxide) (PEO) derivatives could be useful conjugates for the direct functionalisation of gold surfaces dedicated to Surface Plasmon Resonance (SPR)-based DNA sensing. However their use is hampered by the difficulty to obtain them through a convenient and economical route. In this work we compared three synthetic strategies to obtain PNA-high MW PEO conjugates composed of (a) a 15-mer PNA sequence as the probe complementary to genomic DNA of Mycobacterium tuberculosis, (b) a PEO moiety (2 or 5 KDa MW) and (c) a terminal trityl-protected thiol necessary (after acidic deprotection) for grafting to gold surfaces. The 15-mer PNA was obtained by solid-phase synthesis. Its amino terminal group was later condensed to bi-functional PEO derivatives (2 and 5 KDa MW) carrying a Trt-cysteine at one end and a carboxyl group at the other end. The reaction was carried out either in solution, using HATU or PyOxim as coupling agents, or through the solid-phase approach, with 49.6%, 100% and 5.2% yield, respectively. A differential solvent extraction strategy for product purification without the need for chromatography is described. The ability of the 5 KDa PEO conjugate to function as a probe for complementary DNA detection was demonstrated using a Grating-Coupling Surface Plasmon Resonance (GC-SPR) system. The optimized PEO conjugation and purification protocols are economical and simple enough to be reproduced also within laboratories that are not highly equipped for chemical synthesis.  相似文献   

16.
Two methods are described for the terminal grafting of poly(ethylene oxide) (PEO) chains to silica particles. In both cases, a diisocyanate coupling route is employed. In the first method, isocyanatecapped PEO chains are reacted directly with the silica surface in a suitable organic solvent e.g. carbon tetrachloride. This route was found to be suitable for silica surfaces which had been previously, at some stage, dry. The second method, more suitable for aqeous silica dispersions, involves reacting the isocyanate-capped PEO chains with γ-amino n-propyl triethoxysilane. The resultant triethoxysilanecapped PEO chains are then added directly to the silica dispersion during the later stages of its formation (by hydrolysis of tetraethylsilicate in water/methanol mixtures). A co-condensation process results in the grafting of the PEO chains. In both cases, high coverages of PEO chains are achieved. However, in aqeous media it was found necessary to add isopropanol (0.5%) to the system to prevent oxidative degradation of the PEO chains. Even then long-term stability ( > c. 1 month) diffucult to to achieve; this was thought to be due to the slow dissolution process of silica itself in aqeous solution.  相似文献   

17.
We labeled hyaluronan (HA) with two fluorophores, fluorescein amine and rhodamine B amine. These two fluorophores are suitable for a fluorescence (Foerster) resonance energy transfer (FRET) which results in a fluorescein quenching and an enhanced rhodamine emission. Such labeled HA (HA-FRET) is a potential sensor for HA degradation. We studied fluorescence properties of HA-FRET in the absence and presence of hyaluronidase enzyme (HA-ase). The time-resolved fluorescence measurements indicate more than 50% of FRET in the absence of HA-ase. In the presence of HA-ase FRET decreases with time, and relative fluorescence intensities of fluorescein and rhodamine shifts to fluorescein indicating a release of FRET. The kinetics of the digestion process of HA by HA-ase depends on the concentration of the enzyme. We demonstrate that simultaneous measurements of green and red emission of HA-FRET can be used in ratio metric detection of the HA-ase presence and activity. This in turn, can be utilized for the construction of a robust but reliable HA-ase sensing device.  相似文献   

18.
Detection of F?rster resonance energy transfer (FRET) between cyan and yellow fluorescent proteins is a key method for quantifying dynamic processes inside living cells. To compare the different cyan and yellow fluorescent proteins, FRET efficiencies were measured for a set of the possible donor:acceptor pairs. FRET between monomeric Cerulean and Venus is more efficient than the ECFP:EYFP pair and has a 10% greater F?rster distance. We also compared several live cell microscopy methods for measuring FRET. The greatest contrast for changes in intramolecular FRET is obtained using a combination of ratiometric and spectral imaging. However, this method is not appropriate for establishing the presence of FRET without extra controls. Accurate FRET efficiencies are obtained by fluorescence lifetime imaging microscopy, but these measurements are difficult to collect and analyze. Acceptor photobleaching is a common and simple method for measuring FRET efficiencies. However, when applied to cyan to yellow fluorescent protein FRET, this method becomes prone to an artifact that leads to overestimation of FRET efficiency and false positive signals. FRET was also detected by measuring the acceptor fluorescence anisotropy. Although difficult to quantify, this method is exceptional for screening purposes, because it provides high contrast for discriminating FRET.  相似文献   

19.
Stable, pendant polyethylene oxide (PEO) layers were formed on medical-grade Pellethane? and Tygon? polyurethane surfaces, by adsorption and gamma-irradiation of PEO-polybutadiene-PEO triblock surfactants. Coated and uncoated polyurethanes were challenged individually or sequentially with nisin (a small polypeptide with antimicrobial activity) and/or fibrinogen, and then analyzed with time-of-flight secondary ion mass spectrometry (TOF-SIMS). Data reduction by robust principal components analysis (PCA) allowed detection of outliers, and distinguished adsorbed nisin and fibrinogen. Fibrinogen-contacted surfaces, with or without nisin, were very similar on uncoated polymer surfaces, consistent with nearly complete displacement or coverage of previously-adsorbed nisin by fibrinogen. In contrast, nisin-loaded PEO layers remained essentially unchanged upon challenge with fibrinogen, suggesting that the adsorbed nisin is stabilized within the pendant PEO layer, while the peptide-loaded PEO layer retains its ability to repel large proteins. Coatings of PEO loaded with therapeutic polypeptides on medical polymers have the potential to be used to produce anti-fouling and biofunctional surfaces for implantable or blood-contacting devices.  相似文献   

20.
Zero‐mode waveguides (ZMWs) can confine light into attoliter volumes, which enables single molecule fluorescence experiments at physiological micromolar concentrations. Of the fluorescence spectroscopy techniques that can be enhanced by ZMWs, Förster resonance energy transfer (FRET) is one of the most widely used in life sciences. Combining zero‐mode waveguides with FRET provides new opportunities to investigate biochemical structures or follow interaction dynamics at micromolar concentrations with single‐molecule resolution. However, prior to any quantitative FRET analysis on biological samples, it is crucial to establish first the influence of the ZMW on the FRET process. Here, we quantify the FRET rates and efficiencies between individual donor–acceptor fluorophore pairs that diffuse into aluminum zero‐mode waveguides. Aluminum ZMWs are important structures thanks to their commercial availability and the large amount of literature that describe their use for single‐molecule fluorescence spectroscopy. We also compared the results between ZMWs milled in gold and aluminum, and found that although gold has a stronger influence on the decay rates, the lower losses of aluminum in the green spectral region provide larger fluorescence brightness enhancement factors. For both aluminum and gold ZMWs, we observed that the FRET rate scales linearly with the isolated donor decay rate and the local density of optical states. Detailed information about FRET in ZMWs unlocks their application as new devices for enhanced single‐molecule FRET at physiological concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号