首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过采用中心差分格式离散Riemann-Liouville时间分数阶导数和用有限点法建立离散代数系统,提出了数值求解分数阶Cable方程的无网格有限点法,详细推导了该方法的理论误差估计。数值算例证实了该方法的有效性和收敛性,并验证了理论分析结果。  相似文献   

2.
基于单位分解积分的伽辽金无网格方法研究   总被引:1,自引:0,他引:1  
数值积分是伽辽金无网格方法实施的一个重要环节,提出了一种适合于伽辽金无网格方法的单位分解积分技术.该积分技术建立在有限覆盖和单位分解基础之上,不需要对积分区域进行分解,具有较高的积分精度.并以无单元伽辽金方法为例,详细说明了基于单位分解积分的伽辽金无网格方法的实现过程.这样,在近似函数建立和数值积分过程中都不需要进行网格划分,从而形成一种“真正的”无网格方法.  相似文献   

3.
广义有限差分法是一种新型的无网格数值离散方法.该方法基于多元函数泰勒级数展开和加权最小二乘拟合,将控制方程中未知参量的各阶偏导数表示为相邻节点函数值的线性组合,克服了传统有限元等基于网格的方法对网格的依赖性.本文以三维位势问题为例,引入一种新的优化选点技术,克服了传统广义有限差分法在模拟三维复杂几何域问题时遇到的"病态选点问题",极大地提高了该方法的计算精度与数值稳定性.  相似文献   

4.
重点讨论了 LSFD(least square-based finite difference)方法和传统的FD(finite difference)方法在性能上的对比问题.对于传统的中心差分格式,一阶导数和二阶导数在二维情况的数值格式基架点有9个点,三维情况有27个点.在同样的基架点下,给出了LSFD方法近似一阶导数和二阶导数的显式公式,并指出LSFD方法在这种情况下实质上就是在不同网格线上的传统中心差分格式的组合.在数值模拟中,LSFD方法达到收敛所需要的迭代步数比传统差分格式少,并且x和y方向的网格纵横尺度比在 LSFD方法中是一个非常重要的参数,对计算的稳定性有重要影响.  相似文献   

5.
本文研究了基于导数误差的网格生成.利用插值的方法和等分布原理,得到了极小化导数误差移动网格的控制函数,并针对一类奇异摄动对流扩散边值问题设计了基于导数误差有限元移动网格迭代算法,数值实验表明算法是有效的.  相似文献   

6.
对流扩散方程作为偏微分运动方程的分支,在流体力学、气体动力学等领域有着重要应用.为解决对流扩散方程难以通过解析法得到解析解的难题,采用二阶一致3点积分(Quadratically Consistent 3-Point Integration,简称QC3)提高无网格法的计算效率,通过对积分点上形函数导数的修正,改善无网格...  相似文献   

7.
提出了一种新的三维空间对称交错网格差分方法,模拟地形构造中弹性波传播过程.通过具有二阶时间精度和四阶空间精度的不规则网格差分算子用来近似一阶弹性波动方程,引入附加差分公式解决非均匀交错网格的不对称问题.该方法无需在精细网格和粗糙网格间进行插值,所有网格点上的计算在同一次空间迭代中完成.使用精细不规则网格处理海底粗糙界面、 断层和空间界面等复杂几何构造, 理论分析和数值算例表明, 该方法不但节省了大量内存和计算时间, 而且具有令人满意的稳定性和精度.在模拟地形构造中地震波传播时,该方法比常规方法效率更高.  相似文献   

8.
无网格Galerkin法与有限元耦合新算法   总被引:1,自引:0,他引:1  
通过构造新的斜坡函数,把无网格Galerkin法与有限元耦合算法应用到全域范围,并使其能适应不同连接域内单元结点构成,既满足了本质边界条件实现的需要,又能方便灵活的布置无网格点和有限元法中的单元,满足复杂计算要求.计算结果与理论解比较表明所提出的方法是可行和有效的.  相似文献   

9.
关于薄板的无网格局部边界积分方程方法中的友解   总被引:3,自引:1,他引:2  
无网格局部边界积分方程方法是最近发展起来的一种新的数值方法,这种方法综合了伽辽金有限元、边界元和无单元伽辽金法的优点,是一种具有广阔应用前景的、真正的无网格方法.把无网格局部边界积分方程方法应用于求解薄板问题,给出了薄板无网格局部边界积分方程方法所需要的友解及其全部公式.  相似文献   

10.
根据高考数学科考试说明,“两点间的距离、点到直线的距离”及“导数的几何意义”等知识点的考试要求都是B级.求曲线上的点到直线距离涉及“平面解析几何初步”和“导数及其应用”二大章节,是高考中重点考查内容.其基本解题策略是利用点到直线的距离公式得到相应的距离函数,再借助求函数最值的方法(如基本不等式法、导数法、数形结合法等)求其最值得到所求最值.  相似文献   

11.
Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A sec- ond, less-popular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro- duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is designed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.  相似文献   

12.
The paper presents a parallel direct solver for multi-physics problems. The solver is dedicated for solving problems resulting from adaptive finite element method computations. The concept of finite element is actually replaced by the concept of the node. The computational mesh consists of several nodes, related to element vertices, edges, faces and interiors. The ordering of unknowns in the solver is performed on the level of nodes. The concept of the node can be efficiently utilized in order to recognize unknowns that can be eliminated at a given node of the elimination tree. The solver is tested on the exemplary three-dimensional multi-physics problem involving the computations of the linear acoustics coupled with linear elasticity. The three-dimensional tetrahedral mesh generation and the solver algorithm are modeled by using graph grammar formalism. The execution time and the memory usage of the solver are compared with the MUMPS solver.  相似文献   

13.
Automatic control of mesh movement is mandatory in many fluid flow and fluid-solid interaction problems. This paper presents a new strategy, called reduced domain strategy (RDS), which enhances the efficiency of node connectivity-based mesh movement methods and moves the unstructured grid locally and effectively. The strategy dramatically reduces the grid computations by dividing the unstructured grid into two active and inactive zones. After any local boundary movement, the grid movement is performed only within the active zone. To enhance the efficiency of our strategy, we also develop an automatic mesh partitioning scheme. This scheme benefits from a new quasi-structured mesh data ordering, which determines the boundary of active zone in the original unstructured grid very easily. Indeed, the new partitioning scheme eliminates the need for sequential reordering of the original unstructured grid data in different mesh movement applications. We choose the spring analogy method and apply our new strategy to perform local mesh movements in two boundary movement problems including a multi-element airfoil with moving slat or deforming main body section. We show that the RDS is robust and cost effective. It can be readily employed in different node connectivity-based mesh movement methods. Indeed, the RDS provides a flexible local grid deformation tool for moving grid applications.  相似文献   

14.
This contribution is concerned with a parameter-free approach to computational shape optimization of mechanically-loaded structures. Thereby the term ’parameter-free’ refers to approaches in shape optimization in which the design variables are not derived from an existing CAD-parametrization of the model geometry but rather from its finite element discretization. One of the major challenges in using this type of approach is the avoidance of oscillating boundaries in the optimal design trials. This difficulty is mainly attributed to a lack of smoothness of the objective sensitivities and the relatively high number of design variables within the parameter-free regime. To compensate for these deficiencies, Azegami introduced the concept of the so-called traction method, in which the actual design update is deduced from the deformation of a fictitious continuum that is loaded in proportion to the negative shape gradient. We investigate a discrete variant of the traction method, in which the design sensitivities are computed with respect to variations of the design nodes for a given finite element mesh rather than on the abstract level by means of the speed method. Moreover, the design update process is accompanied by adaptive mesh refinement based on discrete material residual forces. Therein, we consider radaptive node relocation as well as hadaptive mesh refinement. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
M. J. Baines 《数学研究》2015,48(2):93-105
In order to move the nodes in a moving mesh method a time-stepping scheme is required which is ideally explicit and non-tangling (non-overtaking in one dimension (1-D)). Such a scheme is discussed in this paper, together with its drawbacks, and illustrated in 1-D in the context of a velocity-based Lagrangian conservation method applied to first order and second order examples which exhibit a regime change after node compression. An implementation in multidimensions is also described in some detail.  相似文献   

16.
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form.  相似文献   

17.
The numerical solution of the harmonic heat map flow problems with blowup in finite or infinite time is considered using an adaptive moving mesh method. A properly chosen monitor function is derived so that the moving mesh method can be used to simulate blowup and produce accurate blowup profiles which agree with formal asymptotic analysis. Moreover, the moving mesh method has finite time blowup when the underlying continuous problem does. In situations where the continuous problem has infinite time blowup, the moving mesh method exhibits finite time blowup with a blowup time tending to infinity as the number of mesh points increases. The inadequacy of a uniform mesh solution is clearly demonstrated.  相似文献   

18.
It is well known that convergence rate of finite element approximation is suboptimal in the L2 norm for solving biharmonic equations when P2 or Q2 element is used. The goal of this paper is to derive a weak Galerkin (WG) P2 element with the L2 optimal convergence rate by assuming the exact solution sufficiently smooth. In addition, our new WG finite element method can be applied to general mesh such as hybrid mesh, polygonal mesh or mesh with hanging node. The numerical experiments have been conducted on different meshes including hybrid meshes with mixed of pentagon and rectangle and mixed of hexagon and triangle.  相似文献   

19.
The efficient generation of meshes is an important component in the numerical solution of problems in physics and engineering. Of interest are situations where global mesh quality and a tight coupling to the solution of the physical partial differential equation (PDE) is important. We consider parabolic PDE mesh generation and present a method for the construction of adaptive meshes in two spatial dimensions using stochastic domain decomposition that is suitable for an implementation in a multi- or many-core environment. Methods for mesh generation on periodic domains are also provided. The mesh generator is coupled to a time dependent physical PDE and the system is evolved using an alternating solution procedure. The method uses the stochastic representation of the exact solution of a parabolic linear mesh generator to find the location of an adaptive mesh along the (artificial) subdomain interfaces. The deterministic evaluation of the mesh over each subdomain can then be obtained completely independently using the probabilistically computed solutions as boundary conditions. A small scaling study is provided to demonstrate the parallel performance of this stochastic domain decomposition approach to mesh generation. We demonstrate the approach numerically and compare the mesh obtained with the corresponding single domain mesh using a representative mesh quality measure.  相似文献   

20.
This paper describes a dynamic data structure and its implementation, used for an optimum mesh generator. The implementation of this mesh generator was a part of a software package implemented to solve electromagnetic field problems using the finite element method. This mesh generator takes advantage of the Delaunay algorithm, which maximizes the summation of the smallest angles in all triangles and thus creates a mesh that is proved to be an optimum mesh for use in the finite element method. The dynamic data structure is explained and the source code is reviewed. The programs have been written in Pascal programming language.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号