首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A prerequisite for a stable singlet hydrocarbon carbene is the existence of high barriers toward isomerization. Four derivatives of cyclopentylidene (1-4) with rigid and varying carbon cages are examined computationally at the B3LYP/6-311+G(d,p) level of theory. Singlet ground states are predicted for carbenes 1-4, with DeltaE(ST)'s = 7-22 kcal/mol. The rearrangement paths considered are 1,3-hydrogen shift, 1,2-carbon shift and beta-CC bond-cleavage. Carbenes 3 and 4 lie in relatively shallow potential-energy wells (around 4 and 6 kcal/mol, respectively) and are expected to rearrange via 1,3-hydrogen shifts to cyclopropane derivatives. For 1 and 2, the lowest energy rearrangement path is beta-CC bond-cleavage requiring about 12 and 20 kcal/mol, respectively, placing 2 in the deepest potential-energy well among the four carbenes.  相似文献   

2.
The thermal isomerization of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene was studied using ab initio methods at the multiconfiguration self-consistent field level. The lowest-energy pathway for thermolysis of both structures proceeds through the (E,Z)-1,3-cycloheptadiene intermediate. Ten transition states were located, which connect these three structures to the final product, (Z,Z)-1,3-cycloheptadiene. Three reaction channels were investigated, which included the conrotatory and disrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane and bicyclo[3.2.0]hept-6-ene and trans double bond rotation of (E,Z)-1,3-cycloheptadiene. The activation barrier for the conrotatory ring opening of tricyclo[4.1.0.0(2,7)]heptane to (E,Z)-1,3-cycloheptadiene was found to be 40 kcal mol(-1), while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene was calculated to be 55 kcal mol(-1). The thermolysis of bicyclo[3.2.0]hept-6-ene via a conrotatory pathway to (E,Z)-1,3-cycloheptadiene had a 35 kcal mol(-1) barrier, while the disrotatory pathway to (Z,Z)-1,3-cyclohetpadiene had a barrier of 48 kcal mol(-1). The barrier for the isomerization of (E,Z)-1,3-cycloheptadiene to bicyclo[3.2.0]hept-6-ene was found to be 12 kcal mol(-1), while that directly to (Z,Z)-1,3-cycloheptadiene was 20 kcal mol(-1).  相似文献   

3.
This letter revisits critical intermediates and transition states of the C2H3 + O2 reaction. To obtain their accurate relative energies, ab initio calculations are performed using sophisticated single and multireference theoretical methods with various basis sets. The energy difference between two crucial transition states, for ring opening in dioxiranylmethyl radical and its isomerization to C2H3OO, is calculated as approximately 2 kcal/mol both at multireference MRCI and at single-reference CCSD(T) levels extrapolated to the complete basis set limit. The deviation from the earlier G2M(RCC,MP2) value (approximately 7 kcal/mol) is caused by a deficiency of the 6-311+G(3df,2p) basis set as compared to correlation-consistent Dunning's basis sets.  相似文献   

4.
To identify the reasons for the very low barrier that has been measured for ring inversion of 1,4,5,5-tetrafluorobicyclo[2.1.0]pentane (deltaG(double dagger) = 6.8 +/- 0.2 kcal/mol), CASSCF and CASPT2 calculations have been performed on ring inversion in this and other bicyclo[2.1.0]pentanes. The results of the calculations show that a cooperative interaction between the geminal fluorines at C2 and the fluorines at C1 and C3 in the singlet cyclopentane-1,3-diyl transition structure (TS) contributes 3.7 kcal/mol to lowering the barrier to ring inversion in the tetrafluoro compound. In contrast, a competitive substituent effect in the TS for ring inversion of 1,4-dicyano-5,5-difluorobicyclo[2.1.0]pentane is predicted to raise the barrier height by 6.1 kcal/mol. The origin of these cooperative and competitive substituent effects is discussed.  相似文献   

5.
Density functional and ab initio molecular orbital calculations have been used to search for the low energy path of the thermal isomerization of [2.1.1]propellane 1. Three reaction modes were considered: ring opening of the bicyclo[1.1.0]butane unit in 1 to give 1,2-dimethylenecyclobutane 21, opening of the four-membered ring of 1 to afford 1,3-dimethylenecyclobutane 20, and breaking of the [2.1.1]propellane central bond and one of the bicyclo[1.1.0]butane side bonds to form carbene 17. At the CAS(12,12)PT2N/6-31G(d) level of theory, the activation barrier of the latter route was lowest in energy. Further investigation of this process at the QCISD(T)/6-311G(d,p)//QCISD/6-31G(d) and B3PW91/6-311G(d,p)// B3PW91/6-311G(d,p) level of theory indicated that the barrier of isomerization of 1 --> 17 amounts to 29 kcal/mol and that 17 is stabilized by hydrogen migration to give dienes 18 and 19.  相似文献   

6.
Mechanisms associated with the isomerization of the O-methylethylene oxonium ion and its tetramethyl-substituted analogue have been explored using correlated electronic structure calculations. The minima and transition states associated with inversion at the oxygen atom, as well as those associated with opening of the epoxide ring, have been characterized. The calculated barrier to inversion at the oxygen atom for the O-methylethylene oxonium ion, 15.7 kcal/mol, agrees well with the experimentally determined value, 10+/-2 kcal/mol. Our calculations indicate that a significantly higher barrier exists for the ring-opening mechanism that leads to more thermodynamically stable structures. This work includes the first known calculations on the O-methyl-2,3-dimethyl-2-butene oxonium ion along with transition states and intermediates associated with ring opening and inversion at the oxygen atom. Results show that there is a significantly lower barrier to ring opening as compared to the O-methylethylene oxonium ion species, leading to a lower probability of isolating this species. The effects of basis sets and correlation techniques on these ions were also analyzed in this work. Our results indicate that the B3LYP/6-31G* level is reliable for obtaining molecular geometries for both minima and transition states on the C3H7O+ and C7H15O+ potential energy surfaces.  相似文献   

7.
To get deep insights into the structure–reactivity relationship for ring‐opening oligomerization reactions toward targeted design of novel main‐chain boron‐containing materials, detailed DFT B97D/TZVP calculations are carried out to compare the ring‐opening oligomerization of both unsubstituted and tert‐butyl (tBu)‐substituted 9H?9‐borafluorenes. In contrast to substituent exchange between normal boranes, such reactions are initiated by substituent exchanges involving double B? C? B bridged intermediates. On tBu‐substitution, the B? C? B, and B? H? B bridged dimer intermediate is stabilized mainly due to enhanced barrier of 18.1 kcal/mol toward further trimerization channel and higher isomerization barrier of 22.5 kcal/mol toward the double B? H? B bridged dimer. In good agreement with available experiments, it is clearly shown that various product channels can be efficiently controlled by bulky substitution and by reaction temperatures, pointing out the way toward desired higher oligomers with improved thermal stability. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
9.
Ab initio and density functional theory calculations at the B3-MP2 and CCSD(T)/6-311 + G(3df,2p) levels of theory are reported that address the protonation of adenine in the gas phase, water clusters, and bulk aqueous solution. The calculations point to N-1-protonated adenine (1+) as the thermodynamically most stable cationic tautomer in the gas phase, water clusters, and bulk solution. This strongly indicates that electrospray ionization of adenine solutions produces tautomer 1+ with a specificity calculated as 97-90% in the 298-473 K temperature range. The mechanisms for elimination of hydrogen atoms and ammonia from 1+ have also been studied computationally. Ion 1+ is calculated to undergo fast migrations of protons among positions N-1, C-2, N-3, N-10, N-7, and C-8 that result in an exchange of five hydrogens before loss of a hydrogen atom forming adenine cation radical at 415 kJ mol(-1) dissociation threshold energy. The elimination of ammonia is found to be substantially endothermic requiring 376-380 kJ mol(-1) at the dissociation threshold and depending on the dissociation pathway. The overall dissociation is slowed by the involvement of ion-molecule complexes along the dissociation pathways. The competing isomerization of 1+ proceeds by a sequence of ring opening, internal rotations, imine flipping, ring closures, and proton migrations to effectively exchange the N-1 and N-10 atoms in 1+, so that either can be eliminated as ammonia. This mechanism explains the previous N-1/N-10 exchange upon collision-induced dissociation of protonated adenine.  相似文献   

10.
The three pathways postulated for 1,3-migration of the peroxyl group in the allylperoxyl radical (1a), a key reaction involved in the spontaneous autoxidation of unsaturated lipids of biological importance, have been investigated by means of quantum mechanical electronic structure calculations. According to the barrier heights calculated from RCCSD(T)/6-311+G(3df,2p) energies with optimized molecular geometries and harmonic vibrational frequencies determined at the UMP2/6-311+G(3df,2p) level, the allylperoxyl rearrangement proceeds by fragmentation of 1a through a transition structure (TS1) with a calculated DeltaH++(298 K) of 21.7 kcal/mol to give an allyl radical-triplet dioxygen loosely bound complex (CX). In a subsequent step, the triplet dioxygen moiety of CX recombines at either end of the allyl radical moiety to convert the complex to the rearranged peroxyl radical (1a') or to revert to the starting peroxyl radical 1a. CX shows an electron charge transfer of 0.026 e in the direction allyl --> O(2). The dominant attractive interactions holding in association the allyl radical-triplet dioxygen pair in CX are due chiefly to dispersion forces. The DeltaH(298 K) for dissociation of CX in its isolated partners, allyl radical and triplet dioxygen, is predicted to be at least 1 kcal/mol. The formation of CX prevents the diffusion of its partners and maintains the stereocontrol along the fragmentation-recombination processes. The concerted 1,3-migration in allylperoxyl radical is predicted to take place through a five-membered ring peroxide transition structure (TS2) showing two long C-O bonds. The DeltaH++(298 K) calculated for this pathway is less favorable than the fragmentation-recombination pathway by 1.9 kcal/mol. The cyclization of 1a to give a dioxolanyl radical intermediate (2a) is found to proceed through a five-membered ring transition structure (TS3) with a calculated DeltaH++(298 K) of 33.9 kcal/mol. Thus, the sequence of ring closure 1a --> 2a and ring opening 2a --> 1a' is unlikely to play any significant role in allylperoxyl rearrangement 1a --> 1a'. In the three pathways investigated, the energy of the transition structure is predicted to be somewhat lower in either heptane or aqueous solution than in the gas phase. Although the energy lowering calculated for TS1 is smaller than the calculated for TS2 and TS3, it is very unlikely that the solvent effects may reverse the predicted preference of the fragmentation-recombination pathway over the concerted and stepwise ring closure-ring opening mechanisms.  相似文献   

11.
The thermolytic behavior of four syn-tricyclo[4.2.0.0(2,5)]octa-3,7-dienes, each spanned by four propano bridges (13, 14, 21, and 26), has been investigated by means of calculations at the UB3LYP/ 6-31G* and CASPT2/6-31G levels. These calculations predict that 13 should undergo a degenerate Cope rearrangement (E(A) = 19.6 kcal/mol), whereas the other three C(20)H(24) isomers should prefer a necessarily disrotatory cyclobutene ring-opening reaction. In the case of 14, the ring-opening reaction (E(A) = 27.2 kcal/mol) is concerted and leads directly to 15, a 4-fold bridged cyclooctatetraene. In the ring opening of 21, the 1,6-bridge in the 4-fold bridged bicyclo[4.2.0]octa-2,4,7-triene 31 prevents formation of the corresponding cyclooctatetraene. In the ring opening of 26, the 4-fold bridged bicyclo[4.2.0]octa-2,4,7-triene derivative 36 is predicted to form the corresponding bridged cyclooctatetraene 38, which should undergo bond shift. The results of these calculations are found to be in very good agreement with the results of experiments on these hydrocarbons.  相似文献   

12.
The first synthesis of trans-tricyclo[4.2.0.0(1,3)]oct-4-ene (1), an ethenyl bridged spirohexane, was accomplished in four steps starting from Carpino et al. gem-dichloro ketone 6. An X-ray crystal structure of 1 with one substituent was obtained to provide geometry data on this novel ring system and to confirm the stereochemical assignment of the penultimate synthetic intermediate. Tricyclo[4.2.0. 0(1,3)]oct-4-ene is surprisingly stable. It reacts with glacial acetic acid but only slowly at 145 degrees C; the products were isolated and identified. A unimolecular rearrangement takes place at elevated temperatures (165 degrees C and higher), presumably, via a biradical intermediate to afford tricyclo[4.2.0.0(1,5)]oct-3-ene (23). The structure of this 1,5-bridged bicyclo[2.1.0]pentane derivative was established by NMR and an X-ray crystal structure of its Diels-Alder adduct with isobenzofuran. Tricyclo[4.2.0.0(1, 3)]oct-4-ene equilibrates with 23, so equilibrium constants and reaction rates were measured over a 20 degrees C temperature range from 180 degrees C to 200 degrees C. The difference in the heats of formation (DeltaDeltaH degrees (f) (23 - 1)) is -2.1 kcal/mol, which is in good agreement with ab initio (HF and MP2) calculations using the 6-31G(d) basis set (-1.9 (HF) and -1.4 (MP2) kcal/mol). Computations on trans-tricyclo[4.2.0.0(1,3)]octane and spirohexane also were carried out, and the structures and energies were compared.  相似文献   

13.
We theoretically investigate a highly strained tricyclic silane (tricyclo[2.1.0.0 1,3]pentasilane (4b), an isomer of pentasila[1.1.1]propellane (3b)) composed of three fused three-membered rings. The central ring is distorted. One of the fusion bonds in the central ring is shorter than the normal Si-Si single bond (2.350 A) whereas the other is as long as the fusion bonds in bicyclo[1.1.0]tetrasilane (2b) (2.860 A) and 3b (2.778 A). The tricyclic silane is less strained than the carbon congener and more strained than the isomer 3b. The electron delocalization between one of the fusion bonds and the geminal Si-Si ring bonds elongates the fusion bond and stabilizes the molecules to reduce the strain. The silanes composed of the fused three-membered rings are less strained than the carbon congener. A degenerate rearrangement of a three-membered ring is predicted. The enthalpy of activation of the rearrangement of the distorted central ring is low (7.2 kcal/mol) for 4b, but appreciable (22.3 kcal/mol) for the germanium congener, tricyclo[2.1.0.0(1,3)]pentagermane (4c). We investigate the effects of the substituents on the distortion of the central three-membered ring and the degenerate rearrangement.  相似文献   

14.
Quantum chemical calculations by using density functional theory at the B3LYP level have been carried out to elucidate the reaction course for the addition of ethylene to [OsO2(CH2)2] (1). The calculations predict that the kinetically most favorable reaction proceeds with an activation barrier of 8.1 kcal mol(-1) via [3+2] addition across the O=Os=CH2 moiety. This reaction is -42.4 kcal mol(-1) exothermic. Alternatively, the [3+2] addition to the H2C=Os=CH2 fragment of 1 leads to the most stable addition product 4 (-72.7 kcal mol(-1)), yet this process has a higher activation barrier (13.0 kcal mol(-1)). The [3+2] addition to the O=Os=O fragment yielding 2 is kinetically (27.5 kcal mol(-1)) and thermodynamically (-7.0 kcal mol(-1)) the least favorable [3+2] reaction. The formal [2+2] addition to the Os=O and Os=CH2 double bonds proceeds by initial rearrangement of 1 to the metallaoxirane 1 a. The rearrangement 1-->1 a and the following [2+2] additions have significantly higher activation barriers (>30 kcal mol(-1)) than the [3+2] reactions. Another isomer of 1 is the dioxoosmacyclopropane 1 b, which is 56.2 kcal mol(-1) lower in energy than 1. The activation barrier for the 1-->1 b isomerization is 15.7 kcal mol(-1). The calculations predict that there are no energetically favorable addition reactions of ethylene with 1 b. The isomeric form 1 c containing a peroxo group is too high in energy to be relevant for the reaction course. The accuracy of the B3LYP results is corroborated by high level post-HF CCSD(T) calculations for a subset of species.  相似文献   

15.
2-(1-Alkoxyvinyl)-1,3-thiazolidines reacted with H2O or D2O in the presence of 105 mol % of p-toluenesulfonic acid or trifluoroacetic acid (20°C, 1 h) to give 2-acetyl-1,3-thiazolidine in quantitative yield. 2-(1-Alkoxyvinyl)-3,5-diphenylimidazolidines underwent hydrolysis in the presence of 20 mol % of an acid (20°C, 24 h) at the vinyloxy group with high regioselectivity yielding 2-acetylimidazolidines. Hydrolysis of 2-(1-alkoxyvinyl)-3-phenyl-1,3-oxazolidines in the presence of 10 mol % of p-toluenesulfonic acid (20°C, 5 days) takes two pathways, one of which involves the endocyclic C-O bond with ring opening and the other involves the vinyloxy group to produce 2-acetyl-3-phenyl-1,3-oxazolidine. Unlike phenyl-substituted 1,3-thiazolidines and imidazolidines, hydrolysis of their 3-methyl- and 3,5-dimethyl-substituted analogs in acid medium occurs mainly via ring opening. The observed hydrolysis pathways were interpreted in terms of B3PW91/6-311G(d,p) quantum-chemical calculations.  相似文献   

16.
Detailed molecular orbital calculations were directed to the cyclopropylcarbinyl radical (1), the cyclopropoxy radical (2), and the cyclopropylaminium radical cation (3) as well as their ring-opened products. Since a considerable amount of data are published about cyclopropylcarbinyl radicals, calculations were made for this species and related ring-opened products as a reference for 2 and 3 and their reactions. Radicals 1-3 have practical utility as "radical clocks" that can be used to time other radical reactions. Radical 3 is of further interest in photoelectron-transfer processes where the back-electron-transfer process may be suppressed by rapid ring opening. Calculations have been carried out at the UHF/6-31G*, MP4//MP2/6-31G*, DFT B3LYP/6-31G*, and CCSD(T)/cc-pVTZ//QCISD/cc-pVDZ levels. Energies are corrected to 298 K, and the barriers between species are reported in terms of Arrhenius E(a) and log A values along with differences in enthalpies, free energies, and entropies. The CCSD(T)-calculated energy barrier for ring opening of 1 is E(a) = 9.70, DeltaG* = 8.49 kcal/mol, which compares favorably to the previously calculated value of E(a) = 9.53 kcal/mol by the G2 method, but is higher than an experimental value of 7.05 kcal/mol. Our CCSD(T)-calculated E(a) value is also higher by 1.8 kcal/mol than a previously reported CBS-RAD//B3LYP/6-31G* calculation. The cyclopropoxy radical has a very small barrier to ring opening (CCSD(T), E(a) = 0.64 kcal/mol) and should be a very sensitive time clock. Of the three series studied, the cyclopropylaminium radical cation is most complex. In agreement with experimental data, bisected cyclopropylaminium radical cation is not found, but instead a ring-opened species is found. A perpendicular cyclopropylaminium radical cation (4) was found as a transition-state structure. Rotation of the 2p orbital in 4 to the bisected array results in ring opening. The minimum onset energy of photoionization of cyclopropylamine was calculated to be 201.5 kcal/mol (CCSD(T)) compared to experimental values of between about 201 and 204 kcal/mol. Calculations were made on the closely related cyclopropylcarbinyl and bicyclobutonium cations. Stabilization of the bisected cyclopropylcarbinyl conformer relative to the perpendicular species is much greater for the cations (29.1 kcal/ mol, QCISD) compared to the radicals (3.10 kcal/mol, QCISD). A search was made for analogues to the bicyclobutonium cation in the radical series 1 and 2 and the radical cation series 3. No comparable species were found. A rationale was made for some conflicting calculations involving the cyclopropylcarbinyl and bicyclobutonium cations. The order of stability of the cyclopropyl-X radicals was calculated to be X = CH2 > X = O > X = NH2+, where the latter species has no barrier for ring opening. The relative rate of ring opening for cyclopropyl-X radicals X = CH2 to X = O was calculated to be 3.1 x 10(6) s(-1) at 298 K (QCISD).  相似文献   

17.
The conversion of "free" and Cr(CO)(5)-complexed 2-vinylphosphiranes into 3-phospholenes via [1,3]-sigmatropic shifts was studied with density functional theory and compared with the corresponding hydrocarbon system, that is, the vinylcyclopropane-cyclopentene rearrangement. All three systems behave similarly with subtle but important differences. No intermediate was found on any of the potential energy surfaces. 2-Vinylphosphiranes have smaller rearrangement barriers than vinylcyclopropane, and those carrying the Cr(CO)(5) group have still smaller ones. The rearrangement of both anti- and syn-2-vinylphosphiranes occurs in a concerted pericyclic manner with inversion of configuration at the migrating phosphorus, requiring, respectively, 29.3 and 36.7 kcal/mol, much in contrast to the 44.6 kcal/mol demanding diradical-like process for the hydrocarbon analogue. Epimerization at the phosphorus center (syn right arrow over left arrow anti) requires approximately 32.0 kcal/mol and occurs in a single step, reflecting a diradical-like ring opening-ring closure process that can occur in both a clockwise and counterclockwise fashion. Complexation of the phosphorus center by Cr(CO)(5) results in the substantial stabilization of reagents and products and further reduces the barriers for rearrangement. The anti isomer has the lowest barrier for the [1,3]-shift (DeltaE = 20.5 kcal/mol), which is slightly less than that needed for P-epimerization and for conversion of the syn isomer, both of which are nonpericyclic processes. When a P-phenyl group is introduced, the diradical-like conversion of the syn isomer is favored over the anti isomer, in agreement with experimental reports. The influence of torquoselectivity is discussed for the rearrangements of these structures with their heavy substituents. The origin of the stabilization rendered by the Cr(CO)(5) group and its influence on the [1,3]-conversion are also analyzed. The DFT activation energies for the diradical-like [1,3]-sigmatropic shifts were verified with a multireference method.  相似文献   

18.
UDFT and CASSCF calculations with the 6-31G(d) basis set were performed to investigate the heavier group 14 element (M) effect on the ground-state spin multiplicity of cyclopentane-1,3-diyls and their reactivity. The calculations find that 2-metallacyclopentane-1,3-diyls (M = Si, Ge) that possess a variety of substituents (X = H, Me, F, OR, SiH(3)) at M(2) are singlet ground-state molecules. The energies of the 1,3-diphenyl-substituted singlet 2-silacyclopentane-1,3-diyls are calculated to be ca. 5 kcal/mol lower than those of the intramolecular ring-closure products, i.e., 1,4-diphenyl-5-silabicyclo[2.1.0]pentanes, at the B3LYP/6-31G(d) level of theory. The energy barrier for the disrotatory ring closure of singlet 2,2-dimethyl-1,3-diphenyl-2-silacyclopentane-1,3-diyl (lambda(calcd) = 757 nm, f = 1.01 at RCIS/6-31G(d)) to the corresponding 5-silabicyclo[2.1.0]pentane is computed to be 11.6 kcal/mol, which is 13.1 kcal/mol lower in energy than that for the conrotatory ring-opening to a 3-silapenta-1,4-diene. The computational work predicts that singlet 1,3-diaryl-2-silacyclopentane-1,3-diyls are persistent molecules under conditions without trapping agents.  相似文献   

19.
The ring-closing reaction of hexatriene radical cation 1(*)(+) to 1,3-cyclohexadiene radical cation 2(*)(+) was studied computationally at the B3LYP/6-31G* and QCISD(T)/6-311G*//QCISD/6-31G* levels of theory. Both, concerted and stepwise mechanisms were initially considered for this reaction. Upon evaluation at the B3LYP level of theory, three of the possible pathways-a concerted C(2)-symmetric via transition structure 3(*)(+) and stepwise C(1)-symmetric pathways involving three-membered ring intermediate 5(*)(+) and four-membered ring intermediate 6(*)(+)-were rejected due to high-energy stationary points along the reaction pathway. The two remaining pathways were found to be of competing energy. The first proceeds through the asymmetric, concerted transition structure 4(*)(+) with an activation barrier E(a) = 16.2 kcal/mol and an overall exothermicity of -23.8 kcal/mol. The second pathway, beginning from the cis,cis,trans rotamer of 1(*)(+), proceeds by a stepwise pathway to the cyclohexadiene product with an overall exothermicity of -18.6 kcal/mol. The activation energy for the rate-determining step in this process, the formation of the intermediate bicyclo[3.1.0]hex-2-ene via transition structure 9(*)(+), was found to be 20.4 kcal/mol. More rigorous calculations of a smaller subsection of the potential energy hypersurface at the QCISD(T)//QCISD level confirmed these findings and emphasized the importance of conformational control of the reactant.  相似文献   

20.
The o-, m-, and p-phenylene bis(1,3-dioxolanium) dications (4-6) and 2,4,6-triphenylene tris(1,3-dioxolanium) trication (7) have been prepared by the ionization of the corresponding 2-methoxyethyl benzoates in FSO(3)H or CF(3)SO(3)H at 40 and 60 degrees C, respectively. The charge delocalization in these carbocations was probed by (13)C NMR chemical shifts and substantiated by GIAO/DFT calculations. Relatively less charge is delocalized into the aromatic ring of the carbotrication 7. The rotational barrier around the C(+)-Ar bond for carbodications 4 and 5 was also estimated to be 8-10 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号