首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The present work describes the experimental investigation of reacting wakes established through fuel injection and staged premixing with air in an axisymmetric double cavity arrangement, formed along three concentric disks, and stabilized in the downstream vortex region of the afterbody. The burner assembly is operated with a co-flow of swirling air, aerodynamically introduced upstream of the burner exit plane, to allow for the study of the interaction between the resulting partially premixed recirculating afterbody flames with the surrounding swirl. At low swirl the primary afterbody disk stabilizes the partially premixed annular jet in the downstream reacting wake formation region. As swirl increases, a system of two successive vortices emerges along the axis of the developing wake; the primary afterbody vortex is cooperating with an adjacent, swirl induced, central recirculation zone and this combination further promotes turbulent mixing in the hot wake.Complementary measurements of the counterpart isothermal turbulent velocity fields provided important information on the near wake aerodynamics under the interaction of the variable swirl and the double cavity produced annular jet stabilized by the afterbody. Under reacting conditions, measurements of turbulent velocities, temperatures and statistics together with an evaluation of the exhaust emissions were performed using LDV, thin digitally-compensated thermocouples and gas analyzers. A selected number of lean and ultra-lean flames were investigated by regulating the injected fuel and the air supply ratio, while the influence of the variation of the imposed swirl on wake development, flame characteristics and emission performance was documented for constant fuel injections. The differences and similarities between the present partially premixed stabilizer and other types of axisymmetric configurations are also highlighted and discussed.  相似文献   

2.
Experiments are carried out on partially premixed turbulent flames stabilized in a conical burner. The investigated gaseous fuels are methane, methane diluted with nitrogen, and mixtures of CH4, CO, CO2, H2 and N2, simulating typical products from gasification of biomass, and co-firing of gasification gas with methane. The fuel and air are partially premixed in concentric tubes. Flame stabilization behavior is investigated and significantly different stabilization characteristics are observed in flames with and without the cone. Planar laser induced fluorescence (LIF) imaging of a fuel-tracer species, acetone, and OH radicals is carried out to characterize the flame structures. Large eddy simulations of the conical flames are carried out to gain further understanding of the flame/flow interaction in the cone. The data show that the flames with the cone are more stable than those without the cone. Without the cone (i.e. jet burner) the critical jet velocities for blowoff and liftoff of biomass derived gases are higher than that for methane/nitrogen mixture with the same heating values, indicating the enhanced flame stabilization by hydrogen in the mixture. With the cone the stability of flames is not sensitive to the compositions of the fuels, owing to the different flame stabilization mechanism in the conical flames than that in the jet flames. From the PLIF images it is shown that in the conical burner, the flame is stabilized by the cone at nearly the same position for different fuels. From large eddy simulations, the flames are shown to be controlled by the recirculation flows inside cone, which depends on the cone angle, but less sensitive to the fuel compositions and flow speed. The flames tend to be hold in the recirculation zones even at very high flow speed. Flame blowoff occurs when significant local extinction in the main body of the flame appears at high turbulence intensities.  相似文献   

3.
The influence of an inhibitor (CF3Br or Halon 1301) on the propagation of high-speed turbulent flames, quasi-detonations and the transition to detonation has been investigated for methane-air, propane-air and acetylene-air mixtures. The experiments are carried out in a 13 m tube (15 cm diameter) filled with regularly spaced orifice plates (blockage ratio of 0.39) to ensure rapid flame acceleration. In all cases, the addition of the inhibitor reduces the turbulent flame velocity and extinguishes the flame with sufficient inhibitor concentration (2.7% and 7.5% for methane-air and propane-air, respectively). For acetylene-air mixtures, the quasi-detonation speed is progressively reduced with increasing inhibitor concentration and eventually causes the failure of the quasi-detonation and transition back to a fast turbulent flame. The inhibitor also narrows the propagation limits in all cases. To elucidate the inhibition mechanism, detailed modelling of both the turbulent flame structure as well as the chemical kinetics are required.  相似文献   

4.
A high‐order accurate upwind compact difference scheme with an optimal control coefficient is developed to track the flame front of a premixed V‐flame. In multi‐dimensional problems, dispersion effect appears in the form of anisotropy. By means of Fourier analysis of the operators, anisotropic effects of the upwind compact difference schemes are analysed. Based on a level set algorithm with the effect of exothermicity and baroclinicity, the flame front is tracked. The high‐order accurate upwind compact scheme is employed to approximate the level set equation. In order to suppress numerical oscillations, the group velocity control technique is used and the upwind compact difference scheme is combined with the random vortex method to simulate the turbulent premixed V‐flame. Distributions of velocities and flame brush thickness are obtained by this technique and found to be comparable with experimental measurement. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Equivalence ratio non-uniformities may give rise to some of the instabilities observed in modern lean premixed combustion systems. The present work intends to investigate the influence of equivalence ratio perturbations on the dynamics of premixed flames. A burner equipped with a secondary injection system is used to generate equivalence ratio perturbations which are convected by the flow and impinge on a conical flame. Two laser-diagnostics, based on Rayleigh scattering and hydrocarbon infrared absorption, respectively, are employed to give insight into the spatial and temporal evolution of the mixture composition field. Rayleigh scattering images also reveal the flame front dynamics providing an indication on the response of a weakly turbulent flame subject to mixture composition inhomogeneities. Laser light absorption provides a time resolved signal which is used to estimate the equivalence ratio perturbation level. A theoretical model based on the G-equation is used to interpret the experimental data and compare the relative effects of velocity and equivalence ratio perturbations.  相似文献   

6.
The influence of varying combustor pressure on flame oscillation and emission characteristics in the partially premixed turbulent flame were investigated. In order to investigate combustion characteristics in the partially premixed turbulent flame, the combustor pressure was controlled in the range of −30 to 30 kPa for each equivalence ratio (Φ = 0.8-1.2). The r.m.s. of the pressure fluctuations increased with decreasing combustor pressure for the lean condition. The combustor pressure had a sizeable influence on combustion oscillation, whose dominant frequency varied with the combustor pressure. Combustion instabilities could be controlled by increasing the turbulent intensity of the unburned mixture under the lean condition. An unstable flame was caused by incomplete combustion; hence, EICO greatly increased. Furthermore, EINOx simply reduced with decreasing combustor pressure at a rate of 0.035 g/10 kPa. The possibility of combustion control on the combusting mode and exhaust gas emission was demonstrated.  相似文献   

7.
The performance of a variety of scale similarity (SS) type models for closure of sub-grid scalar flux in the context of Large Eddy Simulations (LES) of premixed turbulent combustion has been assessed. In addition to the well-known SS models, a more recent development by Anderson and Domaradzki (2012) is included in the analysis and also further model extensions and improvements are discussed. The work is based on a priori analysis of two Direct Numerical Simulation (DNS) databases of freely propagating turbulent premixed flames with a range of different Lewis and turbulent Reynolds numbers. Depending on the balance between the effects of flame normal acceleration due to heat release and the effects of turbulent velocity fluctuations, as well as the filter size, the subgrid-scalar flux exhibits both local gradient and counter-gradient transport which presents a considerable modelling challenge. The assessment is based on a correlation analysis and on the magnitude of the model expressions conditional on the Favre averaged reaction progress variable in comparison to the value obtained from DNS. Despite the fact that most of the models have been developed in the context of momentum transport in non-reactive flows they show either comparable or better performance in comparison to more conventional models used for reactive scalar flux closure. It is found that some models are sensitive to the test filter width and recommendations are provided in this regard. Further it is observed that the use of a Favre test filter substantially increases the correlation strength in direction of mean flame propagation where effects of heat release are most pronounced.  相似文献   

8.
Time-resolved PIV measurements were performed in a dilute particle-laden flow tracking near-neutrally buoyant polystyrene beads and the velocity field of a near wall turbulent boundary layer. Data were taken in a vertical light sheet aligned in the streamwise direction at the center of a horizontal, closed loop, transparent square water channel facility. In addition, low speed measurements were performed characterizing the effects of the dispersed phase on mean and turbulence flow quantities. Reynolds shear stress slightly differed from clear water conditions whereas fluid mean and rms values were not affected. A case study for several beads revealed a clear relation between their movement and near-wall coherent structures. Several structures having 2D vorticity signatures of near-wall hairpin vortices and hairpin packets, directly affected bead movement. A statistical analysis showed that the mean streamwise velocity of ascending beads lagged behind the mean fluid velocity and bead rms values were higher than fluid ones. Particle Reynolds numbers based on the magnitude of the instantaneous relative velocity vector peaked near the wall; values not exceeding 100, too low for vortex shedding to occur. Quadrant analysis showed a clear preference for ascending beads to reside in ejections while for descending beads the preference for sweeps was less.  相似文献   

9.
Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW.The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions.Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence–chemistry interaction.  相似文献   

10.
Large eddy simulations (LESs) are performed to investigate the Cambridge premixed and stratified flames, SwB1 and SwB5, respectively. The flame surface density (FSD) model incorporated with two different wrinkling factor models, i.e., the Muppala and Charlette2 wrinkling factor models, is used to describe combustion/turbulence interaction, and the flamelet generated manifolds (FGM) method is employed to determine major scalars. This coupled sub-grid scale (SGS) combustion model is named as the FSD-FGM model. The FGM method can provide the detailed species in the flame which cannot be obtained from the origin FSD model. The LES results show that the FSD-FGM model has the ability of describing flame propagation, especially for stratified flames. The Charlette2 wrinkling factor model performs better than the Muppala wrinkling factor model in predicting the flame surface area change by the turbulence. The combustion characteristics are analyzed in detail by the flame index and probability distributions of the equivalence ratio and the orientation angle, which confirms that for the investigated stratified flame, the dominant combustion modes in the upstream and downstream regions are the premixed mode and the back-supported mode, respectively.  相似文献   

11.
12.
Laser-Doppler measurements of laminar and turbulent flow in a pipe bend   总被引:3,自引:0,他引:3  
Laser-Doppler measurements are reported for laminar and turbulent flow through a 90° bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60 and 75° planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layers, inlet conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. The displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intenden for use as benchmark data for calibrating flow calculation methods.  相似文献   

13.
Measurements of the mean concentration of source fluid and mean velocity fields were obtained for the first time in the self-preserving region of steady round buoyant turbulent plumes in uniform crossflows using Planar-Laser-Induced-Fluorescence (PLIF) and Particle-Image-Velocimetry (PIV), respectively. The experiments involved salt water sources injected into water/ethanol crossflows within a water channel. Matching the index of refraction of the source and ambient fluids was required in order to avoid image distortion and laser intensity nonuniformities. Further experimental methods and procedures are explained in detail. The self-preserving structure properties of the flow were correlated successfully based on the scaling analysis of [Fischer, H.B., List, E.J., Koh, R.C., Imberger, J., Brooks, N.H., 1979. Mixing in Inland and Coastal Waters, Academic Press, New York, pp. 315–389]. The resulting self-preserving structure consisted of two counter-rotating vortices having their axes nearly aligned with the crossflow direction that move away from the source in the streamwise (vertical) direction due to the action of buoyancy. This alignment, was a strong function of the source/crossflow velocity ratio, u0/v. Finally, the counter-rotating vortex system was responsible for substantial increases in the rate of mixing of the source fluid with the ambient fluid compared to axisymmetric round buoyant turbulent plumes in still environments, e.g., transverse dimensions in the presence of the self-preserving counter-rotating vortex system were 2–3 times larger than the transverse dimensions of self-preserving axisymmetric plumes at similar streamwise distances from the source.  相似文献   

14.
15.
The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号